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Abstract

In the case of polynomial potentials all solutions to 1D Schrödinger equations
are entire functions totally determined by loci of their roots and their behaviour
at infinity. In this paper a description of the first of the two properties is given
for fundamental solutions for the high complex energy limit when the energy
is quantized or not. In particular due to the fact that the limit considered is
semiclassical it is shown that loci of roots of fundamental solutions are collected
on selected Stokes lines (called exceptional) specific for the solution considered
and are distributed along these lines in a specific way. A stable asymptotic limit
of loci of zeros of fundamental solutions on their exceptional Stokes lines have
island forms and there are infinitely many of such roots islands on exceptional
Stokes lines escaping to infinity and a finite number of them on exceptional
Stokes lines which connect pairs of turning points. The results obtained for
asymptotic roots distributions of fundamental solutions in the semiclassical
high (complex) energy limit are of a general nature for polynomial potentials.

PACS numbers: 03.65.−W, 03.65.Sq, 02.30.Lt, 02.30.Mv
Mathematics Subject Classification: 34B05, 34L20, 34M40, 34M60

1. Introduction

As it is already well known [1, 2] the fundamental solutions (FS) [3] have appeared to play a
main role in one-dimensional quantum mechanics (or in a multi-dimensional one allowing a
reduction to the one dimension) with analytic potentials, i.e. polynomial, meromorphic etc. In
particular they allow us to solve all basic problems typical for the field—eigenvalue problems,
scattering problems, problems of decaying and JWKB and adiabatic limits [4]. They are
exceptional also among all the solutions to the corresponding Schrödinger equations because
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of their property of being Borel summable for the polynomial or meromorphic potentials [5].
The latter property allows us to recover these solutions from their JWKB series, both exactly
and approximately if the semiclassical series is abbreviated in the latter case. Finally they
allow us to use in effective calculations their approximations by JWKB formulae having these
approximations under full control.

Not surprising therefore that the fundamental solutions are also very important for
mathematicians, used by them under the name of subdominant solutions, to study properties
of solutions to Schrödinger equations (SE) for polynomial and meromorphic potentials [6].
Among many problems to be under consideration is that of loci of zeros of solutions to SE as a
function of coefficients of polynomial or meromorphic (rational) potentials (see, for example
[7]). This problem is also important from the physical point of view to mention the known
relation between a number of real zeros of the quantized solution to SE and a number of an
energy level corresponding to the solution. In a recent paper of Bender et al [8] a method of
looking for zeros of eigenfunctions of eigenvalue problems with non-Hermitian potentials was
suggested as a tool for checking a possible completeness of the full set of such eigenfunctions.

In another recent paper of Eremenko et al [9] the high energy limit has been considered to
study this problem for a quantized energy in polynomial potentials. The authors have shown
that in this limit the problem simplifies greatly so that it can be standardized and the loci of
zeros of the corresponding quantized FS’s (i.e. these which are a solution to an eigenvalue
problem) are exactly on Stokes lines, called exceptional by the authors, of a Stokes graph (or
global Stokes lines—a name used by mathematicians) corresponding to a considered problem.

Another semiclassical limit has been considered by Hezari [10] who investigated the
problem of complex zeros of eigenfunctions of SE with real polynomial potentials of even
degree in the limit h̄ → 0, where h̄ is the Planck constant, while the energy parameter E was
kept fixed.

However, Hezari’s eigenfunctions are as such a problem of the quantized Planck constant
(being by this a little bit unphysical). In fact the two cases, i.e. the energy quantized while the
Planck constant is kept fixed and the energy kept fixed but the Planck constant is quantized
have two different semiclassical limits for the quantized parameters, i.e. the high energy
limit and the small h̄-limit lead to different behaviour of the corresponding Stokes graphs
and to different sets of eigenfunctions. Nevertheless, since both these limits are of the same
semiclassical nature at least mathematically it is therefore not surprising that Hezari’s results
of complex zeros eigenfunctions problem are similar to those of Eremenko et al. We have
discussed and generalized Hezari’s results in a separate paper [11]

In this paper we would like both to generalize the results of Eremenko et al [9] and to
make the corresponding theorems more precise in the following aspects:

(1) to show that they are valid for unquantized FS’s in the considered limit so that quantized
cases can be seen as particular results of these general ones.

(2) to show how the quantization procedure modifies unquantized zeros distributions of FS’s.
(3) to show that the exceptional Stokes lines of Eremenko et al [9] can be identified with the

boundaries of the canonical domains corresponding to FS’s.
(4) to find the limit distributions of zeros of FS’s along exceptional SL’s using the explicit

form of FS’s and their high energy semiclassical limit.

In fact our analysis provides a full description of the root distribution problem of FS’s to
SE with polynomial potentials in the high (complex) energy limit.

The paper is organized as follows.
In the following section the high-energy limit of SE for polynomial potentials is considered

and its standard form is established.
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In section 3 Stokes graphs (SG) for the standardized high-energy polynomial potential
are considered and their possible standard forms are established in this limit.

In the following section we define the full set of fundamental solutions for the standard
high energy limit potential (−iαz)n and formulate the basic lemma on possible positions of
roots of the FS’s.

In section 5 two theorems are formulated establishing the precise positions of roots of
FS’s in the high energy limit.

In section 6 the results of the previous section are extrapolated to an arbitrary polynomial
potential rescaled correspondingly to the limit considered.

In section 7 the quantized cases of FS’s and an influence of the quantization on distributions
of zeros of FS’s are investigated.

We conclude and summarize the results in section 8.

2. High energy limit of Stokes graphs for polynomial potentials

Consider the stationary 1D Schrödinger equation with a polynomial potential Pn(z) =
anz

n + · · · + a1z where an �= 0, n > 1, and all ai, i = 1, . . . , n, are, in general, complex.
A free term of Pn(z) is assumed to be absorbed by the complex energy parameter E while the
remaining ones are assumed to be energy independent. We have

φ′′(z) − 2m

h̄2 (Pn(z) − E)φ(z) = 0. (1)

To standardize our problem we make the substitution z → −iα
(

E
an

) 1
n z with α = 1 for n

odd and α = 1 or e−i π
n for n even so that we get for ψα(z) ≡ φ

(−iα
(

E
an

) 1
n z
)

ψ ′′
α (z) − λ2Wn(z, λ)ψα(z) = 0 (2)

where

Wn(z, λ) ≡ (−iαz)n − 1 +
n−1∑
k=1

bn−k(−iα)
2k
n+2 λ− 2k

n+2 (−iαz)n−k

(3)

λ2 = −α2 2m

h̄2 a
− 2

n
n E

n+2
n , bn−k = an−k

a
n−k+2
2(n+2)

n

(
2m

h̄2

) k
n+2

, k = 1, . . . , n − 1,

where the factor −iα has been introduced for a convenience that will be self-explaining later.
Let us define also by

W∞
n (z) ≡ (−iαz)n − 1 = lim

|λ|→∞
Wn(z, λ) (4)

the limit form approached by Wn(z, λ) when |E| → ∞.
Let us remind further that for the case considered the Stokes graph (SG) is created as the

set of all lines (Stokes lines (SL)) emerging from each root zi(λ), i = 1, . . . , n, of Wn(z, λ)

and satisfying one of the following equations:

Re

(
λ

∫ z

zi (λ)

√
Wn(ξ, λ) dξ

)
= 0, i = 1, . . . , n (5)

The roots zi(λ), i = 1, . . . , n will also be called turning points.
From (3) and (4) it is obvious that for |E| → ∞, i.e. |λ| → ∞, the limit Stokes graph

corresponding to the rescaled problem is determined by the roots (turning points) of W∞
n (z)

and the phase of λ. It is also clear that for the considered limit the roots zi(λ) are all simple
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and their loci are close to those of W∞
n (z) so that the SG corresponding to Wn(z, λ) differs

only slightly from that corresponding to W∞
n (z) and can be obtained from the latter SG by its

small deformation.
By the above definition the Stokes lines and the corresponding Stokes graph are defined in

the considered limit on the two sheeted Riemann surface R2 with the turning points of W∞
n (z)

as the branch points of this surface. However since on these two sheets the values of
√

W∞
n (z)

differ by a sign only the projections on the z-plane of the Stokes lines defined on each sheet
coincide.

Therefore considering a pattern of SL’s on the cut z-plane Ccut with cuts emerging from
the turning points of W∞

n (z) we see that the SL’s on Ccut are quasi continuous on the cuts
despite the fact that they are pieces of different SL’s collected from the two sheets of R2.

In general, a number of SL’s emerging from a given turning point zi(λ) depends on its
order. In the simplest case of the simple turning point there are exactly three SL’s emerging
from it. Each of them can run to infinity of Ccut or end at another turning point zj (λ). A SL
with the last property is called the inner one.

A SG is called critical if at least one of its SL’s is the inner one. It is called not critical in
the opposite case.

It is worth noting that a variety of the non-critical SG’s for a given potential is much
richer than the critical ones what can be seen already at the level of the general complex
harmonic potential P2(z) = a(z − b)(z − c) with a, b, c to be complex numbers. In this case
the critical SG is defined by the condition Re

∫ c

b

√
a(z − b)(z − c) dz = Re(iπa

1
2 (c − b)2) =

Im(πa
1
2 (c − b)2) = 0, i.e. by one real algebraic equation. Therefore the variety of the critical

SG’s in this case is equivalent to the two five-dimensional real manifolds embedded in the
six-dimensional one of all SG’s corresponding to the case. The potentials with a > 0, b, c

real provide us therefore with critical SG’s while for a < 0, b, c real the corresponding SG’s
are non-critical.

3. Properties of Stokes graphs corresponding to the potentials (−iαz)n

Consider now the SG’s corresponding to W∞
n (z). For this goal assume λ to be real and positive

for a while.
For α = 1 there is a root of W∞

n (z) at z = z0 = i while the remaining ones are regularly
distributed on the circle |z| = 1 being located at z = zk = i ei 2kπ

n , k = ±1,±2, . . . ,±[ n−1
2 ]

and at z = z n
2

= −i for even n, so that the corresponding pairs of them satisfy the relation
zk = −z̄−k (where bar over z means its complex conjugation), i.e. these pairs are located
symmetrically with respect to the imaginary axis.

For even n and α = e−i π
n all zeros are given by pairs z±k = i e±i (2k+1)π

n , k = 1, 2, . . . , n
2

satisfying again the relations zk = −z̄−k .
Let us denote by An,α the full set of indices just established enumerating the turning points

zl , i.e. l ∈ An,α for each zl and corresponding to given n and α and by Zn,α the sets of the
corresponding roots themselves.

By the definitions of the sets Zn,α we have the following simple relations between them

e±i 2π
n Zn,α = Zn,α for all n and α

e±i π
n Zn,1 = −Zn,1 for odd n

e±i π
n Z

n,e−i π
n

= Zn,1 for even n

e±i π
n Zn,1 = Z

n,e−i π
n

for even n

(6)

where −Zn,1 means the set of all −zl, zl ∈ Zn,1.

4



J. Phys. A: Math. Theor. 41 (2008) 465202 S Giller

It can be shown by a direct calculation (see appendix A and [6]) that

∫ z−k

zk

√
(−iαz)n − 1 dz =

⎧⎪⎪⎨
⎪⎪⎩

2i

n
sin

2kπ

n
B

(
3

2
,

1

n

)
for α = 1

2i

n
sin

(2k − 1)π

n
B

(
3

2
,

1

n

)
for α = e− iπ

n

k ∈ An,α (7)

where B(x, y) is the beta function.
Therefore

Re
∫ z−k

zk

√
W∞

n (z) dz = 0, k = 1, 2 . . . , (8)

for any such a pair, i.e. each pair zk, z−k lies on the same Stokes line.
Let us further note that the following relation holds:

∫ z−k

zk

√
(−iαz)n − 1 dz = e±i π

n

∫ z−k′±1

zk′

√
(−iα′z)n − 1 dz, (9)

where α′ are the corresponding α’s on the rhs in (6) for the corresponding α’s on the lhs of
(6) and zk′, z−k′±1 are in the corresponding sets on the rhs of (6), i.e. zk′ , z−k′±1 ∈ Zn,α′ if
zk, z−k ∈ Zn,α .

The relation (9) means that according to the definition of SL’s by (5) there is the inner SL
between the turning points zk, z−k±1 of the set Zn,α if arg λ = ∓π

n
, i.e.

Re

(
|λ| e± iπ

n

∫ z−k∓1

zk

√
(−iαz)n − 1 dz

)
= 0 (10)

Let us remind further that from each root of W∞
n (z) (all the roots are simple) emerge three

SL’s. If these roots are members of a pair zk, z−k, k ∈ An,α, then one of these lines runs from
one root to another while the remaining pairs of SL’s run to infinity of the z-plane.

If a root of W∞
n (z) is not a member of any pair of them then all three SL’s which emerge

of it run to the infinity of the z-plane.
Each pair of neighbour SL’s emerging from the same root and running to the infinity forms

a sector while the SL’s alone lie on its boundary.
However for an odd n there is still a sector whose boundary is formed by the neighbouring

SL’s running to infinity and emerging from the last pair (with the highest value of k = n−1
2 ) of

roots and by the SL linking this pair.
It is easy to note that 2n + 4 is the total number of sectors lying on R2. However because

of coincidence of SL’s projected on Ccut we can consider on this cut z-plane quasi sectors
formed by these projected SL’s. There are now n+ 2 of such quasi sectors which will be called
again sectors for simplicity. We can enumerate them correspondingly to roots attached to their
boundaries.

So for each pair of turning points zk, z−k, k ∈ An,α, the corresponding sectors are denoted
by Sk and S−k respectively while the single sector formed by the last pair of roots in the odd-n
case is denoted by Sn+1

2
and by Sn+2

2
in the even-n case and in the same case the single sector

formed by the first pair of roots is denoted by S0.

5
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If there are single roots, at z = z0 = i or z = z n
2

= −i, then the two sectors connected
with the first root we denote by Sn+3

2
(the left one) and S− n+3

2
for n odd and by Sn+2

2
(the left

one) and S− n+2
2

for n even. The second root at z n
2

can exist only for n even and the two sectors
connected with it are denoted by Sn

2
(the left) and S− n

2
.

Let us denote by Bn,α the full set of indices used to enumerate all the sectors.
Therefore typical SG’s for the cases considered look as in figures 1(a)–(e).
Note that on these figures (as well as on the remaining ones) only topological relations

between SL’s are represented correctly while the corresponding metric ones only roughly. In
particular one has to have in one’s mind that all SL’s emerging to infinity on the figures 1(a)–(e)
(as well as on all the remaining ones in this paper containing SG’s) are collected into bunches
so that all SL’s in a given bunch have the common asymptote which is determined by a ray
emerging from z = 0 called Stokes ray. There are exactly n + 2 of such bunches and the same
number of the corresponding Stokes rays for the polynomial Pn(z), the rays being displayed
by equal angles on Ccut. In the case of figures 1(a)–(e) each bunch of SL’s can contain at most
two such lines.

Let us note further that incorporating the senior coefficient an of Pn(z) into the definition
of the parameter λ has allowed us to avoid considering non-standard distributions of the limit
loci of roots of Wn(z, λ), i.e. rotated by some angle with respect to the standard ones which
would be the case if for example λ was defined by the absolute value of an only.

However such a standardization of the positions of roots has standardized also to some
extent possible patterns of Stokes lines namely by making them sensitive to a change of arg λ

only.
Consider now again the SG’s corresponding to the standard configurations of roots for

real λ. They are shown in figures 1(a)–(e). What happens when λ acquires a nonvanishing
phase β? It is well known that in such a case each three SL’s emerging from the same root
rotate by the angle − 2β

3 around the root while the Stokes rays of the corresponding SG rotate
by 2β

n+2 around the infinity point. Of course for β = ±π the whole SG comes back to its form
for real λ.

However patterns of SG’s arising from this β-rotations are not all topologically different
because of symmetric distributions of turning points. Namely, if we consider the SL linking a
pair zk, z−k (call it Lk) and start to rotate the SG by sufficiently small β > 0 then, since all SL’s
of the graph will rotate anticlockwise, Lk will split into two SL’s now running to the infinity
each. Still enlarging β we can cause one of these splitting SL’s emerging from zk to meet the
root z−k−1, i.e. the two last roots find themselves on the same SL. But as it follows from (10)
this can happen only when β = π

n
and from (9) that this rotation of λ can be compensated by

the opposite rotation of the C-plane which brings the rotated SG again to its standard form of
figures 1(a)–(e) for arg λ = 0.

Therefore as it follows from the above discussion it is enough to rotate the standard
SG by angles β chosen from the interval

(−π
n
, π

n

)
to handle all topologically nonequivalent

configurations of SG for the standard distributions of roots.
Let us put therefore λ = |λ|eiβ, 0 < |β| < π

n
, in the condition

Re

(
λ

∫ z

zk

√
W∞

n (ξ) dξ

)
= 0 (11)

for each zk, k ∈ An,α .
It then follows from the above discussion that all SG’s corresponding to the λ’s chosen

are non-critical, i.e. each of their SL’s defined by (11) runs to the infinity of the z-plane,
see figure 2.

6
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(a)

(b)

Figure 1. (a) SG for an odd n. Broken lines are cuts and the semicircle Ck linking the points zk

and z−k (which is not a SL) is the integration contour in the formula (7). (b) SG for an even n and
α = 1 with odd number of internal SL’s. Broken lines are cuts. (c) SG for an even n and α = 1
with even number of internal SL’s. (d) SG for an even n and α = e− iπ

n with odd number of internal
SL’s. (e) SG for an even n and α = e− iπ

n with even number of internal SL’s.

7
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(c)

(d)

Figure 1. (Continued.)

We shall show in the following sections that for the potentials (−iαz)n and Wn(z) + 1
in the limit |λ| → ∞ all zeros of each of their fundamental solutions are distributed along a
boundary of its canonical domain, while this boundary is a collection of Stokes lines.

8
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(e)

Figure 1. (Continued.)

4. Fundamental solutions for the potential (−iαz)n

The fundamental solutions (FS) of the equation

ψ ′′(z) − λ2((−iαz)n − 1)ψ(z) = 0 (12)

are solutions defined on R2 separately in each of 2n + 4 sectors. They are subdominant in the
sectors which they are defined in, i.e. they vanish for |z| → ∞ inside the sectors. They can
be given explicit forms of the following functional series [3]

ψ∞
k (z, λ) = (W∞

n (z)
)− 1

4 eσkλW̃∞
n (z,zk)χ∞

k (z, λ) (13)

where z ∈ Sk and zk is a turning point lying on the boundary of Sk while

W̃∞
n (z, zk) =

∫ z

zk

√
W∞

n (y) dy

(14)
χ∞

k (z, λ) = 1 +
∑
p�1

(
− σk

2λ

)n

Y∞
k;p(z, λ)

and

Y∞
k;p(z, λ) =

∫
γk(z)

dy1

∫
γk(y1)

dy2 · · ·
∫

γk(yp−1)

dypω∞(y1)ω∞(y2) · · · ω∞(yp)

×(1 − e−2σkλW̃∞
n (z,y1)

)(
1 − e−2σkλW̃∞

n (y1,y2)
) · · · (1 − e−2σkλW̃∞

n (yp−1,yp)
)

n � 1 (15)

with

ω∞(z) = 5

16

(
W∞

n (z)
)′2

(
W∞

n (z)
) 5

2

− 1

4

(
W∞

n (z)
)′′

(
W∞

n (z)
) 3

2

= (W∞
n (z)

)− 1
4
( (

W∞
n (z)

)− 1
4
)′′

. (16)

9
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The signatures σk = ±1 present in formulae (13)–(15) are defined in each particular
sector Sk in such a way to ensure the inequality Re

(
σkλW̃∞

n (z, zk)
)

< 0 to be satisfied in this
sector.

The integration paths γk(z) in (15) which start from the infinities of the corresponding
sectors are chosen in such a way to satisfy the inequality Re

(
σkλW̃∞

n (yi, yi+1)
)

� 0, yi, yi+1 ∈
γk(z), for each factor of the integrations in (15) so that

∣∣1 − e−2σkλW̃∞
n (yi ,yi+1)

∣∣ � 2 on γk(z) and

this together with |ω∞(z)| ∼ |z|− 1
2 n−2 for |z| → ∞ ensures the absolute convergence of the

multiple integral in (15) along γk(z). Such paths are called canonical and a point z for which
γk(z) can be chosen to be canonical is also called canonical with respect to the sector Sk . The
latter property is completely of a topological nature. It is easy to see that each point of the
sector Sk is its canonical point.

It follows also from the above definition of canonical points that the series (14) defining
the solution ψ∞

k (z, λ) is convergent in each canonical point and therefore in the sector Sk . In
fact the domain of its convergence is larger than the sector Sk and the convergence of the series
inside this domain is uniform (see lemma below).

According to our earlier discussion we can assume the argument of λ to vary in the interval(−π
n
, +π

n

)
.

Let us note however that there is no necessity to define the fundamental solutions and
consider them on the whole R2. It is enough to do it on Ccut only because of the following
reasons.

As we have mentioned earlier there is one-to-one correspondence between the sectors
lying on the Ccut which can be considered as a one sheet of R2 and the sectors lying on the
second sheet C ′

cut of R2 the latter sheet being then a complement of Ccut to R2 connected with
Ccut by cuts. The correspondence between two such sectors is built by their coincidence when
C ′

cut is projected on Ccut.
Let S ⊂ Ccut and S ′ ⊂ C ′

cut be a pair of such sectors. Then the two fundamental solutions
defined in each of these two sectors coincide up to a constant. This coincidence is visible
in the form given by (13)–(16) by the invariance of σkW̃

∞
n (z, zk) and σkω∞(z) when passing

from the sector S to S ′ since then σk, W̃
∞
n (z, zk) and ω∞(z) change their signs simultaneously.

Only the common factor
(
W∞

n (z)
)− 1

4 of the solutions changes slightly under this operation
acquiring one of the phase factors ±i.

Therefore we can consider the fundamental solutions defined only on Ccut and the solution
ψ∞

k (z, λ) given by (13)–(16) is defined in the sector Sk the latter being enumerated in the way
described earlier. However if ψ∞

k (z, λ) is defined in the sector crossed by a cut of Ccut we
have to remember about necessary changes in the forms (13)–(16) of the solution described
above to keep its identity when the cut is crossed. This latter note is valid also when such a
cut is crossed by any of the fundamental solutions if the latter is continued analytically along
a canonical path.

A collection Dk ⊂ Ccut of all points canonical with respect to Sk is called a canonical
domain corresponding to Sk . Of course Sk ⊂ Dk for each k [3].

A boundary od Dk is composed of some Stokes lines.
A general rule for a given SL to belong to ∂Dk is that a canonical path γk(z) when z

approaches the line has to cross another SL emerging from the same turning point.
For non-critical SG’s (i.e. all SL’s of which run to the infinities) ∂Dk is composed of all

turning points and of single SL’s emerging from these turning points, testing according the
rule just mentioned, see figure 2.

In other cases (i.e. for critical positions of SG) all three SL’s emerging from a turning
point can belong to ∂Dk . The latter point is then just the root z−k joined by one of its Stokes

10
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Figure 2. Exceptional SL’s and their Vk,ε -vicinity for ψ∞
k (z, λ). The non-critical case (arg λ �= 0).

lines with the turning point zk , i.e. by the line which start from the former point and end at
the latter. Such a line is then called an inner one. All points of the sector S−k cannot be then
joined with the infinity of Sk by cannonical paths and therefore do not belong to Dk .

Each ∂Dk is specific for its canonical domain Dk .
In what follows we will consider also a Ccut(ε)-plane arising from Ccut by depriving the

latter ε-vicinities of the turning points zk, k ∈ An,α . Namely, for any ε > 0 denote by �k(ε)

the following circle vicinities of turning points zk: �k(ε) = {z : |z − zk| < ε}, k ∈ An,α .
Then Ccut(ε) = Ccut\

⋃
k∈An,α

�̄k(ε).
Let Lr

k denote the connected set of SL’s contained in ∂Dk and emerging from the turning
point zr . Therefore for the non-critical SG’s each Lr

k is then a single SL’s and different Lr
k’s

are disjoint pairways while for the critical SG’s a unique difference with the previous case
is connected with Lk

k and L−k
k which are not disjoint, the first one containing the inner SL

between zk and z−k while the second one containing all the three SL’s emerging from z−k ,
therefore also the inner SL between zk and z−k .

The lines Lr
k, r ∈ An,α , will be called (after Eremenko et al [9]) exceptional with respect

to the solution ψ∞
k (z, λ). Of course they are exceptional in that none of their points can be

reached by the solution ψ∞
k (z, λ) if the latter is to be continued to them along canonical paths.

In fact a full set of exceptional SL’s characterizes entirely the boundary ∂Dk of the
canonical domain Dk by the equation:

⋃
r∈An,α

Lr
k = ∂Dk .

For a given Lr
k let us denote by V r

k (ε) an ε-vicinity of this set of SL’s defined by the
following conditions:

(1) Lr
k ⊂ V r

k (ε).
(2) the boundary of V r

k (ε) consists of (at most two) continuous lines an Euclidean distance
of which to Lr

k is smaller than ε (see figures 2 and 3).

Let us further denote by Dk,ε a subset of Dk given by Dk,ε = Dk\V̄k(ε) where
Vk(ε) =⋃r∈An,α

V r
k (ε).

11
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Figure 3. Exceptional SL’s and their Vk,ε -vicinity for ψ∞
k (z, λ). The critical case (arg λ = 0).

It is clear that Vk(ε) is an ε-vicinity of ∂Dk (see figures 2 and 3.)
Needless to say for the non-critical SG’s every turning point zl belongs to Vk(ε) together

with exactly one of its three SL’s which emerge from it. In the case of the critical SG’s the
same is true for all zl excluding z−k which belong to Vk(ε) together with its three SL’s if zk is
connected with z−k by the inner SL.

The following property of FS’s is the key one for our further considerations.

Lemma. In the domain Dk,ε the factor χ∞
k (z, λ) of the solution (13) satisfies the following

bound

|χ∞
k (z, λ) − 1| � e

C∞
ε
λ0 − 1, |λ| > λ0

(17)
C∞

ε = lim inf
γk(z),z∈Dk,ε ,k∈An,α

∫
γk(z)

|ω∞(ξ) dξ | < ∞

where γk(z) are canonical.

We have left the proof of lemma to appendix B.
There is a direct relation between above lemma and the so-called semiclassical expansions

of χ∞-factors of FS’s (13) for λ → ∞ but fixed z which will be needed in our further
considerations. Such expansions have been considered in our earlier papers (see [4], ref. 1
and [5], ref. 5) and have been given the following exponential forms:

χ∞
k (z, λ) ∼ χ

∞(as)
k (z, λ) = 1 +

∑
p�1

(
− σk

2λ

)p

Ỹ∞
k;p(z) =

∑
p�0

(
− σk

2λ

)p

Ỹ∞
k;p(z)

= exp

⎛
⎝∑

p�1

(
− σk

2λ

)p
∫ z

∞k

X∞
p (y) dy

⎞
⎠ (18)

12
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where

Ỹ∞
k;0(z) ≡ 1

Ỹ∞
k;p(z) =

∫ z

∞k

dyn

(
W∞

n (yp)
)− 1

4

((
W∞

n (yn)
)− 1

4

∫ yp

∞k

dyp−1
(
W∞

n (yp−1)
)− 1

4

×
(

· · · (W∞
n (y2)

)− 1
4

∫ y2

∞k

dy1
(
W∞

n (y1)
)− 1

4

((
W∞

n (y1)
)− 1

4

)′′
· · ·
)′′)′′

, p � 1

(19)

and

∑
p�1

(
− σk

2λ

)p

X∞
p (z) ≡ Z∞

k (z, λ) = 1

χ
∞(as)
k (z, λ)

dχ
∞(as)
k (z, λ)

dz
(20)

Note that after the first operation in (19) (i.e. after the integration of ω∞(y1) followed by

multiplication by
(
W∞

n (y1)
)− 1

4 and the double differentiation of the final result) one gets a

function which vanishes as y
− 3

4 n−2
1 when y1 → ∞ while each next such operation lowers the

power of the integrated variable at infinity by − 1
4n − 1. Therefore Ỹ∞

k;p(z), p � 1, are all well
defined.

Note also that X∞
p (y), p � 1, are sector independent holomorphic point functions on the

Ccut-plane which are given by the following recurrent formula (see [4], ref. 2):

X∞
1 (z) = ω∞(z) = (W∞

n (z)
)− 1

4

((
W∞

n (z)
)− 1

4

)′′
= (W∞

n

)− 1
2

U2n−2(z)(
W∞

n (z)
)2

X∞
p (z) = −1

2

(
W∞

n (z)
)− 3

2
(
W∞

n (z)
)′

X∞
p−1(z)

+
(
W∞

n (z)
)− 1

2 (z)

(
m−2∑
k=1

X∞
k X∞

m−k−1 +
(
X∞

p−1(z)
)′)

, p = 2, 3, . . . (21)

where U2n−2(z) is a polynomial of the 2n − 2-degree.
It follows from (21) that X∞

2m,m � 1, have only poles at the turning points while
X∞

2m+1,m � 0, have there the square root branch points. Therefore the same are the properties
of Z+

∞(z, λ) and Z−
∞(z, λ) at these points respectively where Z+

∞(z, λ) + σkZ
−
∞(z, λ) =

Z∞
k (z, λ) and

Z+
∞(z, λ) =

∑
m�1

(
1

2λ

)2m

X∞
2m(z)

(22)

Z−
∞(z, λ) =

∑
m�0

(
1

2λ

)2m+1

X∞
2m+1(z).

The series in (22) are asymptotic, i.e. they are in general divergent. Therefore the analytic
properties of Z±

∞(z, λ) and Z∞
k (z, λ) on the Ccut-plane can be considered only formally as a

known collection of singularities of all X∞
m (z),m � 1.

If we now take into account that χ∞
i→j (λ) ≡ limz→∞j

χ∞
i (z, λ) = χ∞

j→i (λ) where ∞j is
the infinite point of the sector Sj communicated canonically with the sector Si (see ref. 1 of
[4] and ref. 5 of [5]) then we get

e
∫∞j
∞i

(Z+
∞+σiZ

−
∞) dz = e

∫∞i
∞j

(Z+
∞+σj Z

−
∞) dz

. (23)

13
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Since however σi = −σj then we get from (23)∫ ∞j

∞i

Z+
∞(z, λ) dz = 0 (24)

or ∫ ∞j

∞i

X∞
2m(z) dz = 0, m � 1 (25)

for any pair of canonically communicated sectors.
However the integration in (25) is now not limited by canonical paths since under the

integral there are now no exponentials limiting this integration to canonical paths and all
X∞

2m(z),m � 1 are holomorphic point function on the Ccut-plane, i.e. these paths can be freely
deformed with the integral being still convergent. It is easy to see that because of that a
given integral (25) can be deformed to any other integral between any pair of sectors (i.e. not
necessarily communicated canonically) as well as to any integral along an arbitrary loop. It
means that residua of X∞

2m(z),m � 1 and therefore also of Z+
∞(z, λ) at the poles which they

have at the turning points have to vanish.
Therefore we conclude that the Riemann surface of Z+

∞(z, λ) is just the C-plane on which
it is formally meromorphic with vanishing residua at its poles. Thus when integrating Z∞

k (z, λ)

along contours starting and ending at the same points we get only contribution from the odd
part of Z∞

k (z, λ), i.e. from σkZ
−
∞(z, λ).

5. High energy limit of loci of zeros of fundamental solutions for the potential (−iαz)n

It follows from the lemma that making λ0 sufficiently large, i.e. λ0 � Cε , we can make
χ∞

k (z, λ) arbitrarily close to unity for z ∈ Dk,ε and |λ| > λ0. But this means that for such
conditions ψ∞

k (z, λ) vanishes nowhere in Dk,ε . Therefore, we have the following theorem
about loci of zeros of ψ∞

k (z, λ).

Theorem 1. For sufficiently large λ all zeros of ψ∞
k (z, λ) lie entirely in the completion

Ccut\Dk,ε of the domain Dk,ε .

In the case of a non-critical SG this completion coincides of course with Vk,ε while in
the critical case it can contain also a whole sector. This is because in the case of the potential
considered a connected set of SL’s which contains more than three lines with three of them
emerging from the same turning point zk has to contain also one more turning point, i.e. z−k . If
we consider a solution ψ∞

k (z, λ) defined in the sector Sk then the sector S−k and its boundary
∂S−k cannot be connected with Sk by canonical paths, i.e. they lie in the completion Ccut\Dk .
We see that S−k is just the sector which has been mentioned earlier as contained in Ccut\Dk,ε

(see figure 3).
To formulate a theorem giving the precise positions of the roots of ψ∞

k (z, λ) mentioned
in theorem 1 for the cases of non-critical SG’s let us make the following several notes.

The first one is that in choosing Ccut we can always choose the corresponding cuts in
such a way to ensure all the SL’s lying in Ccut to be strictly (i.e. not quasi) continuous in this
cut plane, i.e. none of these lines can cross any cut. With such a choice for every root zk of
W∞

n (z) the values of Im
(
λ
∫ z

zk

√
W∞

n (y) dy
)

have definite sign on every SL emerging from zk

depending on the line.
The second one is, as we have already mentioned, that in the case of non-critical SG’s

every turning point zl belongs to ∂Dk together with exactly one of its three SL’s which emerge
from it and ∂Dk is collected exactly of only such SL’s.

14
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The third one is the most important since it establishes the way of taking the limit λ → ∞.
Namely, as it follows from appendix B zeros of ψ∞

k (z, λ) scatter around such an exceptional
line sliding down in the limit considered in directions to the respective turning point from
which the line emerges. If these zeros are not sufficiently far from the turning point they
unavoidably approach their limit just in this point. However in such a case the conditions of
the validity of the representations (13)–(16) and their semiclassical expansions (18)–(21) are
broken, i.e. the limit positions of zeros are outside of the domains Dk,ε engaged in taking the
limit. A necessary condition to get the limit loci of zeros different from the turning point is to
take their initial loci to be λ-dependent. This dependence in the formulae given below is not
only necessary but also sufficient giving finite loci of zeros different from turning points.

This dependence however defines also the way of getting the limit λ → ∞ enforcing to
put |λ| = [|λ|] + �, 0 � � < 1, where [|λ|] is a step function of |λ| (i.e. an integer not greater
than |λ| itself) and to consider the limit λ → ∞ conditioned by the fixed value of �. This
kind of limit will be called regular to distinguish it from the free limit, i.e. with no conditions.
Obviously, each � defines a different way of getting the limit λ → ∞ by ψ∞

k (z, λ) and its
zeros as well.

Nevertheless, we can also consider zeros, the limit loci of which are just turning points
when λ → ∞. However we have to remember in such cases that the asymptotic formulae
used to get these loci have to be bounded to the domains Dk,ε .

The following theorems give the precise limit positions of roots of ψ∞
k (z, |λ| eiβ) for

|λ| → ∞ up to all orders of λ−1.

Theorem 2a. Zeros ζ
(k)
l,qr (λ), |λ| = [|λ|] + �, l ∈ An,α, q = 0, 1, 2, . . . , r = 0,±1,±2, . . . ,

of ψ∞
k (z, |λ|eiβ), 0 < |β| < π

n
, i.e. in the non-critical cases, in the regular limit [|λ|] → ∞,

are distributed on Ccut uniquely along the corresponding exceptional SL’s according to the
formulae:∫

Kl(ζ
(k)
l,qr (λ))

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

k (y, λ)

)
dy = ±

(
q[|λ|] + r − 1

4

)
iπ

λ
(26)

where Kl(ζ
(k)
l,qr (λ)) is a contour which starts and ends at ζ

(k)
l,qr (λ) rounding the turning point zl

anticlockwise and Z∞
k (z, λ) is defined by (20).

Zeros ζ
(k)
l,qr (λ) have the following semiclassical expansion:

ζ
(k)
l,qr (λ) =

∑
p�0

1

λp
ζ

(k)

l,qr;p(�) (27)

for q > 0 with two first terms given by:∫
Kl(ζ

(k)
l,qr0)

1

2

√
W∞

n (y) dy =
∫ ζ

(k)

l,qr;0

zl

√
W∞

n (y) dy = ±qiπ e−iβ

(28)

ζ
(k)

l,qr;1(�) = ±
(

r − q� − 1

4

)
iπ e−iβ√

W∞
n

(
ζ

(k)

l,qr;0
)

For q = 0 we have instead ζ
(k)

l,0r;0(�) ≡ zl and∫ zl+ζ
(k)

l,0r;1(�)/λ

zl

√
W∞

n (y) dy =
(

r − 1

4

)
iπ

λ
(29)

r >
|λ|
π

lim sup
|φ|�π

∣∣∣∣∣
∫ zl+ε eiφ

zl

√
W∞

n (y) dy

∣∣∣∣∣
15
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as well as

ζ
(k)

l,0r;2(�) = 1

8

∫
Kl

(
zl+ζ

(k)

l,0r;1(�)/λ

)X∞
1 (y) dy√

W∞
n

(
zl + ζ

(k)

l,0r;1(�)/λ
) (30)

The signs ± above are to be chosen the same as of Im
(
eiβ
∫ z

zl

√
W∞

n (y) dy
)

on the
corresponding exceptional lines.

First of all what follows from the formulae (27) and (28) is that, according to (5),
ζ

(k)
l,qr0, q = 1, 2, . . . , lie on SL emerging from zl while the same cannot be said about the first

term of the expansion (27), i.e. the integral
∫ ζ

(k)
l,qr (λ)

zl

√
W∞

n (y) dy is not purely imaginary if the

first and next orders of λ−1 are included in the expansion (27). It means that zeros ζ
(k)
l,qr (λ)

deviate from SL considered when higher order terms in (27) are included beginning from the
first one.

We get therefore the following picture of loci of zeros ζ
(k)
l,qr (�) in the considered regular

limit.
For each �, 0 � � < 1, these zeros are distributed along the SL emerging from zl .
However for q = 0 as we have mentioned earlier only those zeros of ψ∞

k (z, λ) can be
considered which lie in the domain Dk,ε , i.e those whose distances from the turning points
zl, l ∈ An,α, cannot be smaller than ε. The semiclassical method we have used does not
permit us to study zeros of ψ∞

k (z, λ) which lie arbitrarily close to zl . In fact as it follows from
the discussion in appendix B all zeros of ψ∞

k (z, λ) lying at finite distances from zl, l ∈ An,α ,
before the limit λ → ∞ is taken aggregate around these turning points arbitrarily close to
them when the limit is done. Therefore the semiclassical method allows us to observe only
‘tails’ of these groups of zeros and these tails are described by formulae (29)–(30). Since as
we have seen the case q = 0 cannot be fully included into our discussion we shall ignore it in
the remaining theorems except the next one.

For q > 0 zeros detected in these cases come from a vicinity of the infinite point of the
Ccut-plane. For a given q, q = 1, 2, . . . , every two neighbouring zeros are separated from each

other by iπ e−iβ
/(

λ

√
W∞

n (ζ
(k)
l,qr0)

)
. For a given q, q = 1, 2, . . . , and r, r = 0,±1,±2, . . . ,

when � changes from zero to unity these zeros occupy a line

z = ζ
(k)

l,qr;0 +

(
r − q� − 1

4

)
iπ e−iβ√

W∞
n

(
ζ

(k)

l,qr;0
) 1

[|λ|] + �
(31)

which crosses the exceptional SL considered at z = ζ
(k)

l,qr;0 for � = (r − 1
4

)/
q.

On the other hand for higher q = 1, 2, . . . , a distance dq between the neighbouring
such lines of zeros measured along the exceptional SL (it is Ll

k this time) is equal to

dq = iπe−iβ
/√

W∞
n

(
ζ

(k)

l,q0;0
)

and vanishes with q → ∞.
Figure 4(a) illustrates the exceptional lines for ψ∞

n+2
2

(z) for even n and α = e−i π
n occupied

by zeros of this solution with the distinguished exceptional line L
n
4 −1
n+2

2
on which the described

above details of the zeros distribution are shown.
To formulate the corresponding theorem for the critical cases of SG’s, i.e. for real λ, we

have to note that Ccut\Dk = ∂Dk ∪ S−k so that ∂Dk contains the point z−k together with the
three SL’s which emerge from it. This is just a set L−k

k of exceptional SL’s emerging from
z−k .

Let us note further a role played in the critical cases of SG’s by the integral
λ
∫ z−k

zk

√
W∞

n (y) dy ≡ λIk . For λ real and positive it can always be represented as

16
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(λ)ζ

(λ)ζ

(a)

(b)

Figure 4. (a) SG for an even n and α = 1. The bold lines are exceptional SL’s along which zeros of
ψ∞

n+2
2

(z, λ) are distributed in the regular limit λ → ∞. On one of them details of such distribution

are shown. (b) SG for an odd n and α = 1. Bold lines are exceptional SL’s along which zeros of
ψ∞

n+2
2

(z, λ) are distributed in the regular limit λ → ∞.
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Ikλ = −(r + R)iπ where r � 0 is an integer and |R| � 1
2 . Both r and R depend,

of course, on λ and due to this dependence R can take on an arbitrary value from its
domain of variation. Conversely, fixing R on some R0 we choose in this way an infinite
sequence λk,r (R0) = − iπ

Ik
(r + R0), r = 0, 1, 2, . . . of λ’s growing to infinity and such that

R(λk,r (R0)) = R0. We shall maintain further for such sequences a description regular as well
as for the limit λ → ∞ itself using these sequences if |R| < 1

2 while we call them singular
if |R| = 1

2 . As previously all other sequences of λ’s not restricted by any condition will be
again called free.

It should be stressed however that as it follows from the form of the χ∞-factors of FS’s
and what will be seen later when semiclassical limit λ → ∞ of particular formulae will be
taken that to apply regular limits one needs to satisfy the inequality cos(Rπ) � λ0

λ
> 0.

However this condition is always satisfied for any |R| < 1
2 when λ is sufficiently large.

In theorem 2a we have used regular sequences of λ conditioned by fixed value of �. In
theorem 2b below the regular limit λ → ∞ will be also considered when R has a fixed value.
This is essentially the main difference between the critical and non-critical cases in taking the
limit λ → ∞.

Theorem 2b. Zeros ζ
(k)
l,qr (λ), |λ| = [|λ|] + �, l ∈ An,α, l �= −k, q = 1, 2, . . . , r =

0,±1,±2, . . . , of ψ∞
k (z, |λ|), i.e. in the critical cases, in the regular limit [|λ|] → ∞,

i.e. with fixed �, are distributed on Ccut uniquely along the corresponding exceptional SL’s
according to the formulae:∫

Kl(ζ
(k)
l,qr (λ))

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

k (y, λ)

)
dy = ±

(
q[|λ|] + r − 1

4

)
iπ

λ
(32)

where Kl

(
ζ

(k)
l,qr (λ)

)
is a contour which starts and ends at ζ

(k)
l,qr (λ) rounding the turning point zl

anticlockwise.
Zeros ζ

(k)
l,qr (λ) have the following semiclassical expansion:

ζ
(k)
l,qr (λ) =

∑
p�0

1

λp
ζ

(k)

l,qr;p(�) (33)

for q > 0 with two first terms given by∫
Kl

(
ζ

(k)

l,qr;0
) 1

2

√
W∞

n (y) dy =
∫ ζ

(k)

l,qr;0

zl

√
W∞

n (y) dy = ±qiπ

(34)

ζ
(k)

l,qr;1(�) = ±
(

r − q� − 1

4

)
iπ√

W∞
n

(
ζ

(k)

l,qr;0
) .

For q = 0 we have instead ζ
(k)

l,0r;0(�) ≡ zl and∫ zl+ζ
(k)

l,0r;1(�)/λ

zl

√
W∞

n (y) dy =
(

r − 1

4

)
iπ

λ
(35)

r >
|λ|
π

lim sup
|φ|�π

∣∣∣∣∣
∫ zl+εeiφ

zl

√
W∞

n (y) dy

∣∣∣∣∣
as well as

ζ
(k)

l,0r;2(�) = 1

8

∫
Kl(zl+ζ

(k)

l,0r;1(�)/λ)
X∞

1 (y) dy√
W∞

n

(
zl + ζ

(k)

l,0r;1(�)
/
λ
) . (36)
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The signs ± above are to be chosen the same as of Im
( ∫ z

zl

√
W∞

n (y) dy
)

on the
corresponding exceptional lines.

In the case l = k the number q is bounded, i.e. q � |Ik|/π and in (34) the minus sign is
to be chosen according to our earlier conventions.

Additionally in a regular limit λk,s → ∞, i.e. with R fixed, where λk,s = − s+R
Ik

iπ =
[λk,s] + �k,s(R), s = 0, 1, 2, . . ., there are two infinite sequences of zeros ζ

(k)±
−k,qr , q =

1, 2, . . . , r = 0,±1,±2, . . ., of ψ∞
k (z, |λ|) distributed along the two infinite SL’s of the

sector S−k according to the following rules:∫ ζ
(k)±
−k,qr

z−k

√
W∞

n (y) dy = −
(

q[λk,s] + r − 1

4
+

R

2

)
iπ

λk,s

+
1

4λk,s

∮
Kk

Z∞
k dy

± 1

2λk,s

ln 2 cos

(
Rπ +

1

2
Im
∮

Kk

Z∞
k dy

)
± 1

2λk,s

∫
K−k(ζ

(k)±
−k,qr )

Z∞
k dy (37)

with the following first coefficients of the corresponding semiclassical expansion of ζ
(k)±
−k,q;r :∫ ζ

(k)±
−k,qr;0

z−k

√
W∞

n (y) dy = −qiπ

(38)

ζ
(k)±
−k,qr;1(R) = −

(
r − q�k,s(R) − 1

4
+

R

2
∓ 1

2
ln 2 cos(Rπ)

)
iπ√

W∞
n

(
ζ

(k)±
−k,qr;0

)
where the plus sign corresponds to a vicinity of the SL being the upper boundary of S−k while
the minus one to a vicinity of its lower boundary.

Figure 4(b) shows all the exceptional SL’s of the odd n case occupied by zeros of ψ∞
k (z, λ)

in the limits considered in the above theorem.
All the above three theorems have been proved in appendix B.
It follows therefore from the notes made above that the cases R = ± 1

2 have to be
considered separately. It should not be surprising that they are just the quantized cases of the
solution ψ∞

k (z, λ) considered.

6. High energy limit of loci of zeros of fundamental solutions for the potential

Wn(z, λ) + 1

Let us denote −iαz by ζ and λ− 2
n+2 by η and let |arg λ| < π

n
. Then for the polynomial Wn(z, λ)

we have

Wn(z, λ) → W̃n(ζ, η) ≡ Wn

(
iα−1ζ, η− n+2

2
) = ζ n − 1 +

n−1∑
k=1

b′
n−kη

kζ n−k

b′
n−k = bn−k(−iα)

2k
n+2 .

(39)

Let us note that bounding | arg λ| by π
n

we always get the standard SG’s corresponding to
W∞

n (z) as a limit of the corresponding SG’s related to Wn(z, λ) when λ → ∞.
It follows from the above form of W̃n(ζ, η) that if ζ0 is its root for η = 0 then, by the

implicit function theorem, there is also such a root ζ(η) of W̃n(ζ, η) which is close to ζ0 for η

sufficiently close to zero, i.e. ζ(η) = ζ0 − 1
n
b′

n−1η + O(η2) for η → 0. It means of course that
for sufficiently large λ all the roots of Wn(z, λ) are simple and are close to the corresponding
roots of W∞

n (z), i.e to each root zk of the latter potential there is the root zk(λ) of the former
one such that zk(λ) = zk − i 1

nα
b′

n−1λ
− 2

n+2 + O
(
λ− 4

n+2
)

for |λ| → ∞, k ∈ An,α .
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Let us re-examine for the potential considering the respective notions of SG’s and FS’s
and remaining ones related to them. A necessity to do it is caused by the λ-dependence of
the potential Wn(z, λ) + 1 and as it is seen from (39) this dependence is by powers of λ− 2

n+2 .
Such a dependence complicates an analysis of λ-dependence of SG’s, FS’s and other notions.
It is easier to make the respective analyses by a substitution λ → λ

n+2
2 in the corresponding

Schrödinger equation (2) with the potential Wn(z, λ) + 1 by which the potential itself convert
to depend on natural powers of λ−1 and making simultaneously the same substitution for the
SE with the potential W∞

n (z) + 1.
The corresponding SG’s can be now defined by using the new λ-parameter for both the

potentials. It does not disturb much properties of SG’s for the potential W∞
n (z) + 1 except that

it makes these graphs more sensitive for λ-changes (because λ is now powered by (n + 2)/2),
i.e. the graphs come back to their initial forms when λ is rotated by the angle φ = 2π/(n + 2)

rather than by π as previously, for example, and this is just this new angle which is now a
period for such graphs’ changes.

In the case of the potential Wn(z, λ) + 1 the corresponding graphs defined by (5) where λ

is substituted by λ
n+2

2 depend now on λ and if λ changes it needs a total change equal to 2π

of its argument to make the graphs coming back to their initial positions. Changing absolute
value of λ alone also forces the graphs to change while the graphs corresponding to W∞

n (z)+1
are insensitive on such a change of λ.

All these do not prevent us however to define the corresponding FS’s by formulae (13)–
(16) together with the corresponding definitions of canonical paths, canonical domains, etc,
including also constructions of domains Dk,ε contained in canonical domains Dk together
with ε-vicinities Vk,ε of their respective boundaries ∂Dk, k ∈ Bn,α , and with exceptional SL’s
related to them. We have only to remember that all the above notions depend now on λ and
can change with it continuously.

Nevertheless, despite the mentioned λ-dependence lemma of section 4 remains valid also
in the case of the potential Wn(z, λ) + 1. This can be argued as follows.

Consider a fundamental solution ψk(z, λ) to the SE (2) corresponding to the potential
Wn(z, λ)+1 and a respective domain Dk,ε(λ) where this solution can be continued canonically
to any of its point and let |λ| > λ0 with λ0 sufficiently large to find each zk(λ) inside
corresponding circle vicinities �k(ε), k ∈ Bn,α .

By the same arguments and with obvious changes the inequality (17) in the domain
Dk,ε(λ) can be written for the solution ψk(z, λ) as follows:

|χ∞
k (z, λ) − 1| � exp

⎡
⎣Cε(λ)

λ
n+2

2
0

⎤
⎦− 1

(40)
Cε(λ) = lim inf

γk(z),z∈Ccut(ε),k∈Bn,α

∫
γk(z)

|ω(ξ, λ) dξ | < ∞.

Therefore lemma of section 4 sounds now (see appendix B for a proof):

Lemma’. In the domain Dk,ε(λ) the factor χ∞
k (z, λ) of the FS solution ψk(z, λ) constructed

for the potential Wn(z, λ) + 1 satisfies the following bound:

|χ∞
k (z, λ) − 1| � exp

⎡
⎣ Cε

λ
n+2

2
0 (ε)

⎤
⎦− 1, |λ| > λ0(ε)

(41)
Cε = C∞

ε + ε

with λ0(ε) sufficiently large and with fixed but arbitrary small ε.
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Therefore theorem 1 remains valid also for the potential Wn(z, λ) + 1 with no changes.
To formulate analogues of theorem 2a and 2b we have to establish the corresponding

forms of the semiclassical expansions (18)–(20) for the case of the potential Wn(z, λ) + 1.
These expansions have to be a little bit different because of a dependence of the potential
on λ.

First we note that the χ -factors of the FS’s ψk(z, λ) with the potential Wn(z, λ) + 1 and λ

changed as mentioned earlier satisfy the following equation:

W
− 1

4
n (z, λ)

(
W

− 1
4

n (z, λ)χk(z, λ)
)′′

+ 2σkλ
n+2

2 χ ′
k(z, λ) = 0 (42)

which can be transformed to the (pseudo-)integral equation of the form

χk(z, λ) = 1 − σk

2λ
n+2

2

∫ z

∞k

W
− 1

4
n (y, λ)

(
W

− 1
4

n (y, λ)χk(z, λ)
)′′

dy (43)

corresponding to the χk-factor of the FS defined in the sector Sk(λ).
An attempt to get a solution for χk(z, λ) from (43) by iterations leads to a divergent series

which however appears to be just a semiclassical expansion for χk(z, λ) of the form:

χk(z, λ) ∼ χas
k (z, λ) =

∑
p�0

(
− σk

2λ
n+2

2

)p

Ỹk,p(z, λ), (44)

where Ỹk,p(z, λ) are given by (19) with W∞
n (z) substituted by Wn(z, λ).

If further using (19) (with the substitutions mentioned) we make the following expansion:

Ỹk,p(z, λ) =
∑
q�0

Ỹk;p,q(z)λ
−q

(45)
Ỹk;0,q(z) ≡ δ0q

then (44) can be given the following forms depending on a parity of n:

χas
k (z, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
p�0

∑m
q=0

Yk;pq(z)

λ(m+1)p+q
, n = 2m

∑
p�0

1

22p

2m+2∑
q=0

Yk;2p,q(z)

λ(2m+3)p+q

− σk

2λ
2m+3

2

∑
p�0

1

22p

2m+2∑
q=0

Yk;2p+1,q(z)

λ(2m+3)p+q
, n = 2m + 1

(46)

where the coefficients of the last expansions are given by those of the expansion (45) as

Yk;pq(z) =
p∑

r=0

(
−σk

2

)r

Ỹk;r,(m+1)(p−r)+q(z), n = 2m

Yk;2p,q(z) =
p∑

r=0

22(p−r)Ỹk;2r,(2m+3)(p−r)+q(z)

Yk;2p+1,q (z) =
p∑

r=0

22(p−r)Ỹk;2r+1,(2m+3)(p−r)+q(z)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

n = 2m + 1.

(47)
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The exponential representations of χas
k (z, λ) have similar forms to (18), i.e.

χas
k (z, λ) = exp

(∫ z

∞k

Zk(y, λ) dy

)

Zk(z, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
p�1

m∑
q=0

Xk;pq(z)

λ(m+1)p+q
, n = 2m

∑
p�1

1

22p

2m+2∑
q=0

Xk;2p,q(z)

λ(2m+3)p+q

− σk

2λ
2m+3

2

∑
p�0

1

22p

2m+2∑
q=0

Xk;2p+1,q (z)

λ(2m+3)p+q
, n = 2m + 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

χas
k (z, λ)

dχas
k (z, λ)

dz
. (48)

However the corresponding recurrent relations for Xk;pq(z) are now much more
complicated. Nevertheless, since Zk(z, λ) satisfy the equations

W
− 1

4
n

(
W

− 1
4

n

)′′
+ 2
(
W

− 1
4

n

(
W

− 1
4

n

)′
+ σkλ

n+2
2
)
Zk + W

− 1
2

n

(
Z2

k + Z′
k

) = 0 (49)

then the partition Zk(z, λ) = Z+(z, λ) + σkZ
−(z, λ) still can be done with the same properties

(24) for Z+(z, λ) and the corresponding conclusions about its analytical properties on the
z-plane.

Unlike the case of the potential W∞
n (z) + 1 we have to use also the following asymptotic

expansion of
√

Wn(z, λ)√
Wn(z, λ) = √W∞

n (z) +
∑
p�1

Wn,p(z)

λp
(50)

as well as the asymptotic expansions of the limit loci of zeros ζ
(k)
l (λ), l ∈ An,α , of the FS

ψk(z, λ)

ζ
(k)
l (λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
p�0

m∑
q=0

ζ
(k)

l;p,q

λ(m+1)p+q
n = 2m

∑
p�0

2m+2∑
q=0

ζ
(k)

l;2p,q

λ(2m+3)p+q

+
1

λ
2m+3

2

∑
p�0

2m+2∑
q=0

ζ
(k)

l;2p+1,q

λ(2m+3)p+q
, n = 2m + 1.

(51)

Having done properly the semiclassical expansions of the respective quantities in order to
be as close as possible to the previous formulations of theorem 2a and 2b, we can come back
to the previous form of λ-dependence by a substitution in all the above formulae λ

n+2
2 back by

λ itself. Then we can formulate the following theorems analogous to theorem 2a and 2b.

Theorem 3a. In the non-critical case and in the regular limit λ → ∞ zeros ζ
(k)
l,qr (λ), |λ| =

[|λ|] + �, l ∈ An,α, q = 1, 2, . . . , r = 0,±1,±2, . . . , of ψk(z, |λ|eiβ), 0 < |β| < π
n

are
distributed on Ccut uniquely along the corresponding exceptional SL’s according to the
formulae∫

Kl(ζ
(k)
l,qr (λ))

(
1

2

√
Wn(y, λ) − 1

2λ
Zk(y, λ)

)
dy = ±

(
q[|λ|] + r − 1

4

)
iπ

λ
(52)
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where Kl

(
ζ

(k)
l,qr (λ)

)
is a contour which starts and ends at ζ

(k)
l,qr (λ) rounding the turning point zl

anticlockwise and Zk(z, λ) is defined by (48).
The two lowest terms of the semiclassical expansions of zeros ζ

(k)
l,qr (λ) given by (49) are

the following:

∫
Kl(ζ

(k)

l,qr;0,0)

1

2

√
W∞

n (y) dy =
∫ ζ

(k)

l,qr;0,0

zl

√
W∞

n (y) dy = ±qiπ e−iβ

(53)

ζ
(k)

l,qr;0,1(�) = ±
(

r − q� − 1

4

)
iπ e−iβ√

W∞
n

(
ζ

(k)

l,qr;0,0

)
and are calculated from (52) according to formula (B.10) of appendix B.

The signs ± above are to be chosen to agree with signs of Im
(
eiβ
∫ z

zl

√
Wn(y, λ) dy

)
on

the corresponding exceptional lines.

Suppose now that there is an inner SL linking the roots zk0 , z−k0 of Wn(z, λ) while the
others are absent (see figure 5(b)). In the limit case λ → ∞ it is possible only for arg λ �= 0
but with arg λ ∼ |λ|− 2

n+2 (see appendix C). Then for the assumed arrangement of SL’s we have
the following:

Theorem 3b. In the critical case, when there is inner SL linking zk0 with z−k0 , and in the regular
limit λ → ∞ zeros ζ

(k)
l,qr (λ), |λ| = [|λ|] + �, l ∈ An,α, q = 1, 2, . . . , r = 0,±1,±2, . . . ,

of ψk(z, |λ|eiβ), 0 < |β| < π
n
, k �= k0,−k0, are distributed on Ccut uniquely along the

corresponding exceptional SL’s according to the formulae:∫
Kl(ζ

(k)
l,qr (λ))

(
1

2

√
Wn(y, λ) − 1

2λ
Zk(y, λ)

)
dy = ±

(
q[|λ|] + r − 1

4

)
iπ

λ
(54)

where Kl

(
ζ

(k)
l,qr (λ)

)
is a contour which starts and ends at ζ

(k)
l,qr (λ) rounding the turning point zl

anticlockwise and with Zk(z, λ) given by (48)
The two lowest terms of the semiclassical expansions of zeros ζ

(k)
l,qr (λ) given by (49) are

the following:

∫
Kl(ζ

(k)

l,qr;0,0)

1

2

√
W∞

n (y) dy =
∫ ζ

(k)

l,qr;0,0

zl

√
W∞

n (y) dy = ±qiπ e−iβ

(55)

ζ
(k)

l,qr;0,1(�) = ±
(

r − q� − 1

4

)
iπe−iβ√

W∞
n

(
ζ

(k)

l,qr;0,0

)
and are calculated from (52) according to formula (B.10) of appendix B.

The signs ± above are to be chosen to agree with signs of Im
(
eiβ
∫ z

zl

√
Wn(y, λ) dy

)
on

the corresponding exceptional lines.
In the cases l = k0,−k0 the numbers q are bounded, i.e. q � |Ik0 |/π with the minus sign

in (53) chosen by assumption.
Additionally in a regular limit λk0,s → ∞, i.e. with R fixed, where λk0,s = − s+R

Ik0
iπ =

[λk0,s] + �k0,s(R), s = 0, 1, 2, . . ., there are two infinite sequences of zeros ζ
(k0)±
−k0,qr , q =

1, 2, . . . , r = 0,±1,±2, . . . of ψk0(z, λ) distributed along the two SL’s of the sector S−k0

according to the following rules:
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(a)

(b)

Figure 5. (a) The regular limit λ → ∞ of zeros of ψk(z, λ) for the potential Wn(z, λ)+1 (n—odd).
The non-critical case. The bold lines are exceptional SL’s. (b) The regular limit λ → ∞ of zeros of
ψk(z, λ) for the potential Wn(z, λ) + 1 (n—odd). The critical case. The bold lines are exceptional
SL’s. (c) The singular (R = 1

2 ) limit λr → ∞ of zeros of ψk0 (z, λ) for the potential W∞
n (z)

(n—odd). The critical case. The bold lines are exceptional SL’s. (d) The singular (R = 1
2 ) limit

λr → ∞ of zeros of ψk0 (z, λ) for the potential Wn(z, λ) + 1 (n—odd). The critical case. The bold
lines are exceptional SL’s.
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(c)

(d )

Figure 5. (Continued.)

∫ ζ
(k0)±
−k0 ,qr

z−k0

√
Wn(y, λ) dy = −

(
q[λk0,s] + r − 1

4
+

R

2

)
iπ

λk0,s

+
1

4λk0,s

∮
Kk0

Zk0 dy

± 1

2λk0,s

ln 2 cos

(
Rπ +

1

2
Im
∮

Kk0

Zk0 dy

)
± 1

2λk0,s

∫
K−k0

(
ζ

(k0)±
−k0,qr

)
Zk0 dy

(56)
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with the following lowest coefficients of the corresponding semiclassical expansion of ζ
(k0)±
−k0,qr :

∫ ζ
(k0)±
−k0 ,qr;0,0

z−k0

√
W∞

n (y) dy = −qiπ

(57)

ζ
(k0)±
−k0,qr;0,1(R) = −

(
r − q�k0,s(R) − 1

4
+

R

2
∓ 1

2
ln 2 cos(Rπ)

)
iπ√

W∞
n

(
ζ

(k0)±
−k0,qr;0,0

)
where the plus sign corresponds to the SL being the upper boundary of S−k0 while the minus
one to its lower boundary.

Obviously the second part of this theorem applies also to the FS ψ−k0(z, λ) with
appropriate changes.

7. High energy behaviour of zeros for quantized energy

By a quantization of energy we mean an identification of some two chosen fundamental
solutions. However such a choice is in fact quite limited particularly when the high energy
limit, |λ| → ∞, is taken.

First, in general, one cannot identify two neighboured FS’s since they are always linearly
independent.

Second, in the high energy limit, identifying two not neighboured FS’s, one in fact
demands, that the two sectors in which these FS’s are defined have to be connected by an inner
SL (see (59) below). This means that we can consider only the standard SG cases, i.e. when
these inner SL’s are parallel to the real axis of the Ccut-plane. Therefore we can put the energy
quantization conditions only on the pairs ψ∞

k (z, λ), ψ∞
−k(z, λ), k = ±1,±2, . . . , k ∈ An,α , for

the potential W∞
n (z) and for analogous pairs for the potential Wn(z, λ) + 1. But as it follows

from each of formulae (B.25) and (B.26) of appendix B the corresponding quantization
conditions for the potential W∞

n (z) when matching the pair ψ∞
k (z, λ), ψ∞

−k(z, λ) read

1 + exp

[
2
∫ z−k

zk

(
σkλ
√

W∞
n (y) + Z∞

k (y, λ)
)

dy

]
= 0 (58)

or∫ z−k

zk

(
σkλs

√
W∞

n (y) + Z∞
k (y, λs)

)
dy = −

(
s +

1

2

)
π i, s = 0, 1, 2, . . . (59)

what proves that in the limit λs → ∞ the SL emerging from zk ends at z−k , i.e. this is the
inner SL.

The equation (59) thus proves that for the potential W∞
n (z) when the energy is quantized

there are inner SL’s for each k = ±1,±2, . . . , k ∈ An,α , but only for one value of k, i.e.
this which satisfies (59), the energy is quantized and the corresponding FS’s coincide, i.e.
ψ∞

k (z, λs) = i(−1)sψ∞
−k(z, λs) as it follows from (B.25) or (B.26). However in the case of

the potential Wn(z, λ) + 1 the SL satisfying equation (59) can be the unique inner one for the
corresponding SG while the remaining SL’s of this graph emerge to infinity.

Let now equation (59) be satisfied for k = k0. Then comparing (59) with equation (37)
we see that R = 1

2 for this k0 and therefore we cannot apply the result given by (37) to this
case. Nevertheless, we can use the fact that now ψ∞

−k0
(z, λ) coincides with ψ∞

k0
(z, λ) up to a

constant and since it cannot vanish in its sector S−k0 so does ψ∞
k0

(z, λ), i.e. there are no longer
roots of ψ∞

k0
(z, λ) along the boundaries of the sector S−k0 .

Nevertheless, there are still such roots of ψ∞
k (z, λ) in the corresponding sectors S−k for

k �= k0.
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Let us call the fundamental solution ψ∞
k0

(z, λs) quantized if the quantization conditions
(59) is satisfied just for the number k0. Of course it is satisfied also for the number −k0 so the
solution ψ∞

−k0
(z, λs) is also quantized and both the solutions coincide up to a constant.

Therefore if we identify the quantized solutions ψ∞
k0

(z, λs) and ψ∞
−k0

(z, λs) then an
exceptional set for them is just a section

⋃
r∈A Lr

k0
∩ ⋃r∈A Lr

−k0
= ∂Dk0 ∩ ∂D−k0 while

for the remaining FS’s their exceptional sets are kept unchanged.
We thus come up to the following conclusion:

Corollary 1a. In the case of the potential W∞
n (z) when the singular high energy limit λs → ∞

(or equivalently s → ∞) are considered roots of both the quantized FS’s and the not quantized
ones are distributed on the Ccut-plane uniquely on the exceptional SL’s corresponding to these
solutions and the corresponding formulae of theorem 2b, where λ and � should be substituted
by λs and �s respectively, are valid for these distributions excluding formulae (37) and (38)
which are no longer valid for the quantized solutions (see figure 5(c)).

Exactly the same notes as above can be done with respect to the quantized solutions
ψk0(z, λs) = i(−1)sψ−k0(z, λs) corresponding to the potential Wn(z, λ) + 1. They are now
both deprived of zeros lying on the infinite SL’s emerging from the turning points zk0(λ) and
z−k0(λ) while keeping their zeros distributed on the inner SL linking these two turning points
and on their remaining exceptional SL’s.

It is therefore clear how the corresponding conclusion for the quantized high energy limit
for the potential Wn(z, λ) + 1 should sound.

Corollary 1b. In the singular high energy limit λs → ∞ roots of FS’s for the potential
Wn(z, λ) + 1 are distributed uniquely on exceptional lines corresponding to these solutions
according to the formulae of theorems 3b, where λ and � should be substituted by λs and
�s respectively, except the quantized solutions ψk0(z, λs) = i(−1)sψ−k0(z, λs) for which the
formulae (56) and (57) are no longer valid (see figure 5(d)).

8. Summary and discussion

In this paper we have shown that the high energy limit distributions of zeros of appropriately
scaled fundamental solutions (FS) for polynomial potentials can be described completely
both for the quantized and non-quantized cases of these solutions. The quantized cases were
considered earlier by Eremenko et al [9] where the authors pointed out that the exceptional
Stokes lines (ESL) are the loci of zeros of FS’s. We have completed their observation in this
case giving a detailed description of positions of these zeros on the ESL’s. However we have
considered the zeros distribution problem of FS’s in general showing that loci of zeros of FS’s
on their ESL’s is their common property which has to be completed by theorems 2b and 3b
which find additional zeros of FS’s outside the ESL’s for the critical cases of SG’s.

However, to get stable patterns for zeros loci distributions of FS’s we have been forced to
consider regular asymptotic high energy limit of these loci getting as a result island pictures for
these distributions with the islands numbered by q in the corresponding theorems. Different
regular limits (controlled by the � and R parameters) have lead to different distributions of
zeros inside each island with the latter distributions being controlled by the r-parameter in
theorems 2–3.

It is worth noting also that taking these regular limits stabilizes the limit zeros distributions
of FS’s in the same way as the rescaling z-variable by energy E in the initial polynomial
potential Pn(z) stabilizes its zeros distribution in the limit E → ∞ reducing it to the zeros
loci of the polynomial (−iαz)n − 1.
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Appendix A

We shall show here that the integrals (8) are all pure imaginary. We simply calculate them.
To this goal it is necessary to consider W∞

n (z) on the cut z-plane. We make all these cuts
from each turning point zk parallely to the real axis and running to Re z = −∞ if zk lies to
the left from the imaginary axis or is placed on it and running to Re z = +∞ in the opposite
case. Then argument of z − zk will be taken from the interval (−π, π) for the first group of
turning points taking the values −π, π below and above the corresponding cuts respectively
(see figure 1(a)). For the second group of zk their arguments are taken from the interval (0, 2π)

with the values 0, 2π above and below the cuts, respectively.
Now, making in the integral (8) the following change of variable z → ξ = (−iαz)n we

are to calculate the integrals∫ z−k

zk

√
W∞

n (z) dz =
∫

Ck

√
W∞

n (z) dz = − 1

iαn

∫
C̃k

(ξ − 1)
1
2 ξ

1−n
n dξ, (A.1)

where the integration contour Ck is an arc of a unit radius starting from the point zk and ending
at z = z−k , running clockwise and avoiding all the met turning points zk−1, . . . , z−k+1 (see
figure 1(a)) while C̃k is the image of Ck on the ξ -Riemann surface defined by the above change
of variable (see figure A1).

It is easy to note that C̃k is a collection of 2k or 2k−1 unit radius circles on this ξ -Riemann
surface depending on α. The first value corresponds to α = 1 and the second to α = e− iπ

n . The
first circle starts at the point ξ = 1 on the sheet on which arg ξ = 2kπ . The latter argument is
just that of ξk = (−iαzk)

n. In figure A1 this is the kth sheet from above with ak+1 as the lower
boundary of the cut between 0 and 1 on this sheet. Each next circle is an image of successive
arcs of the contour Ck . The last circle corresponds to the unit radius arc between the points
z−k+1 and z−k and it ends at unity on the n − k + 1-th sheet.

As it follows from figure A1 the integration along C̃k on the ξ -Riemann surface can be
deformed to go along the cuts between the points ξ = 0 and ξ = 1 on the respective sheets of
the surface. Then the integrations along the ak+1 and an−k+1 cuts survive only (the remaining
ones mutually cancel) so that their contributions to the last integral in (A.1) (call it Ik) are as
follows:

Ik = − 1

iαn

∫
C̃k

(ξ − 1)
1
2 ξ

1−n
n dξ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1

in

∫ 1

0
(1 − ξ)

1
2 ξ

1−n
n dξ

(−ei nπ+4kπ
2n + ei nπ+4π(n−k+1)

2n

)
for α = 1

− 1

iαn

∫ 1

0
(1 − ξ)

1
2 ξ

1−n
n dξ

(−ei nπ+4(k−1)π

2n + ei nπ+4π(n−k)

2n

)
for α = e− iπ

n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

2i

n
sin

2kπ

n
B

(
3

2
,

1

n

)
for α = 1

2i

n
sin

(2k − 1)π

n
B

(
3

2
,

1

n

)
for α = e− iπ

n

⎫⎪⎪⎬
⎪⎪⎭ k ∈ An,α (A.2)

where B(x, y) is the beta function.
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ζ

Figure A1. 2n cut ξ -planes of Riemann surface of (ξ − 1)
1
2 ξ

1−n
n . The letters a1, . . . , dn denote

boundaries of cuts. Boundaries with the same letters are glued.

Appendix B

Here we prove the lemma of section 5, theorems 2a–2b of section 5 and lemma’ of section 6.

Proof of lemma. To prove this lemma let us note that ω∞(z) is holomorphic in Ccut(ε)

vanishing there as z− 1
2 n−2 for z → ∞. Therefore the integrals Ik(z) = ∫

γk(z)
|ω∞(ξ) dξ |, k =

1, . . . , n + 2, are well defined in the closure C̄cut(ε) and are bounded there. Hence C∞
ε does

exist and is finite in C̄cut(ε) and therefore can be taken the same for each Dk,ε . The estimation
(17) follows then directly from (15) since

∣∣1 − e−2σkλW̃∞
n (yi ,yi+1)

∣∣ � 2 in this formula for each
i if all the integrations are performed on canonical paths γk(z) what is always possible by the
definition of Dk,ε . �

Proof of lemma’. As we have mentioned in section 6 the turning points zk(λ) of Wn(z, λ) tend
to corresponding roots zk of W∞

n (z) in the limit λ → ∞. Therefore taking λ0 > 0 sufficiently
large we can find all the roots zk(λ) in the corresponding circles |z − zk| < ε for |λ| > λ0.
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Therefore as in the case of ω∞(z) also ω(z, λ) corresponding to the potential Wn(z, λ) is
holomorphic in the closure C̄cut(ε) and bounded there since it vanishes there as z− 1

2 n−2 for
z → ∞. Hence, as previously, the integrals Ik(z, λ) = ∫

γk(z)
|ω(ξ, λ) dξ |, k ∈ Bn,α, are well

defined in the closure C̄cut(ε) and are bounded there by Cε(λ) defined by

Cε(λ) = lim inf
γk(z),z∈C̄cut(ε),k∈Bn,α

Ik(z, λ). (B.1)
�

However Cε(λ) is a continuous function of Re λ and Im λ for |λ| > λ0. Therefore since
also limλ→∞ Cε(λ) = C∞

ε in a closure of C̄cut(ε), Cε(λ) is bounded by some constant Cε(λ0)

with the property that Cε(λ0) → C∞
ε for λ0 → ∞. The latter means that for λ0 sufficiently

large we can choose a constant Cε(λ0) to be independent of λ0 and to differ from C∞
ε by ε,

i.e. Cε(λ0) � Cε = C∞
ε + ε.

Now the estimation (41) follows directly from (14) written for the potential Wn(z, λ) + 1.

Proof of theorems 2a and 2b. According to lemma, for every k, ψ∞
k (z, λ) can be represented

in Dk,ε for |λ| > λ0 � Ck,ε as

ψ∞
k (z, λ) = (W∞

n (z)
)− 1

4 eσkλ
∫ z

zk

√
W∞

n (y) dy
(1 + O(|λ|−γ )), γ � 1. (B.2)

�

In fact the above estimation of ψ∞
k (z, λ) in Dk,ε can be extended to any finite order in λ−1.

It will be convenient to include into this estimation all orders of λ−1, i.e. to represent ψ∞
k (z, λ)

by its full asymptotic form (18). Therefore we will use further the following asymptotic
representations for ψ∞

k (z, λ):

ψ∞
k (z, λ) ∼ ψ

∞(as)
k (z) = (W∞

n (z)
)− 1

4 eσkλ
∫ z

zk

√
W∞

n (y) dy
χ

∞(as)
k (z, λ)

= (W∞
n (z)

)− 1
4 eσkλ

∫ z

zk

√
W∞

n (y) dy+
∫ z

∞k
Z∞

k (y,λ) dy
. (B.3)

Despite the fact that the asymptotic semiclassical series Z∞
k (y, λ) is generally divergent

we can use it in its full form having however in mind that it can be abbreviated in any moment
at some finite power of λ−1 to provide us with an estimation like (B.2) but valid then up to the
order kept.

To perform detailed calculations we shall assume the Ccut plane to be cut in the following
way.

For the root z0 and z n
2

(if they are) the corresponding cuts coincide with the positive and
negative parts of the imaginary axis, respectively. So there are in fact two SL’s, mutually
parallel to themselves on Ccut and lying on different sites of the cut.

For the remaining roots the corresponding cuts are parallel to the real axis running to the
left for the roots lying on the left from the imaginary axis and running to the right for the roots
placed on the right from the imaginary axis so that the pattern of cuts is completely symmetric
with respect to the imaginary axis.

Arguments of differences z−zk, k ∈ An,α , are always taken with respect to axis emerging
from the roots zk parallely to the real axis and keeping its direction (see figure 1(a)). For the
right-hand roots these arguments are taken from above the cuts. The arguments are positive if
they are taken clockwise and negative in the opposite cases.

Arranging cuts in the above way makes Ccut simple connected what makes all considered
functions defined on it single valued as well as it allows for simple and unique calculations of
arguments of respective quantities.

With these conventions a sign of Re
(
λ
∫ z

zk

√
W∞

n (y) dy
)
, | arg λ| � π

n
, is therefore always

positive for the sectors S0, S± n+3
2

and S± n+2
2

. This sign is always negative for the sectors Sn+1
2
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and S± n
2
. For the remaining sectors Sk, k ∈ Bn,α, this sign is negative above the cuts crossing

these sectors and positive below them, i.e. it changes each time these cuts are crossed (see
figure 1(a)). Note that this switch of the signs does not occur on the other cuts. In the same
way behave all terms of the expansion Z∞

k in (B.3).

Also the factor
(
W∞

n (z)
)− 1

4 in (B.3) crossing each cut changes its phase by ∓i. The
upper sign has to be taken when the cut on the positive imaginary axis is crossed from its
right or the left-hand cuts are crossed from above while the lower has to be taken for the
negative imaginary axis cut and the r.h. cuts crossed in the same directions (i.e. to the left and
down, respectively). The signs are changed to opposite if the cuts are crossed in the opposite
directions (see figures 1(a) and (b)).

Therefore we assume the form (B.3) of the solution ψ∞
k (z, λ) to be valid in the negative

parts of the sectors Sk, k = ±1,±2, . . . , k ∈ Bn,α, and in the sectors Sn+1
2

and S± n+2
2

, so that
σk = +1 there.

The form (B.3) is also assumed to be valid for the sectors S0, S± n+1
2

and S± n
2

but then
σk = −1 for the corresponding solutions.

The asymptotic forms (B.3) of the FS’s when the latter are continued analytically across the
Ccut-plane along canonical paths while keeping their validity change therefore appropriately

by acquiring additional phases by the factor
(
W∞

n (z)
)− 1

4 or by switching their signs by the
exponentials λ

∫ z

zk

√
W∞

n (y) dy +
∫ z

∞k
Z∞

k (y, λ) dy on the cuts met.
We shall consider below in detail the analytic continuation of the exact solutions ψ∞

k (z, λ)

and their asymptotic expansions (B.3) as well along canonical paths. We will get first
exact results of such continuations to come over next to their asymptotic forms and to
get finally their limit for λ → ∞. We shall consider them one by one beginning with
k = 0, n+3

2 , n+2
2 , 1, 2, . . . , n+1

2 , i.e. going down the corresponding SG’s, but neglecting detailed
calculations for the solutions for which the corresponding results can be obtained be symmetry
arguments.

k = 0 case. This case corresponds to an even-n and α = e− iπ
n so that the corresponding SG

with exceptional SL’s for this case is shown in figures 1(d) and (e).
We shall continue ψ∞

0 (z, λ) to vicinities Vk,ε of its exceptional SL’s (ESL) expressing
it simply as a linear combinations of FS’s defined in sectors closest to the particular ESL
considered at the moment. By symmetry arguments we can do it only for the left ESL’s of
figures 1(d) and (e).

Using first the exact forms (13) of the solutions we can get coefficients of the corresponding
linear combinations also in their limit forms up to any order of λ−1 by substituting the exact
expressions by their asymptotics (B.3).

Therefore continuing ψ∞
0 (z, λ) to the vicinity of the ESL emerging from the root

zk, k = 1, . . . , n
2 we get

ψ∞
0 (z, λ) = i e−λ

∫ zk
z0

√
W∞

n (y) dy χ∞
0→k+1

χ∞
k→k+1

ψ∞
k (z, λ)

− i e−λ
∫ zk
z0

√
W∞

n (y) dy+λ
∫ zk+1
zk

√
W∞

n (y) dy χ∞
0→k

χ∞
k→k+1

ψ∞
k+1(z, λ)

=
(
W∞

n (z)
)− 1

4 e−λ
∫ zk
z0

√
W∞

n (y) dy

χ∞
k→k+1

(
e−λ

∫ z

zk

√
W∞

n (y) dy
χ∞

0→k+1χ
∞
k (z, λ)

− i eλ
∫ z

zk

√
W∞

n (y) dy
χ∞

0→kχ
∞
k+1(z, λ)

)
, (B.4)

where χ∞
i→j = limz→∞j

χ∞
i (z) = limz→∞i

χ∞
j (z) = χ∞

j→i (see, for example [4], ref. 2).
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From (B.4) we get the following exact condition for loci ζ
(0)
k,m of zeros of ψ∞

0 (z, λ) on the
considered ESL∫ ζ

(0)
k,m

zk

√
W∞

n (y) dy = +

(
m − 1

4

)
iπ

λ
+

1

2λ
ln

χ∞
0→k+1χ

∞
k (ζ

(0)
k,m, λ)

χ∞
0→kχ

∞
k+1(ζ

(0)
k,m, λ)

, (B.5)

where m is a positive integer and the choice of the ‘+’-sign is determined by the positiveness
of the lhs of (B.5) on the ESL considered.

Now we would like to come over in (B.5) to the limit λ → ∞. However if we want to
use the results of lemma we need ζ

(0)
k,m to be kept inside the domain Dk,ε , i.e. their distances

to zk in the limit λ → ∞ should be greater than ε. It then follows from (B.5) that for large λ

also m should be large, i.e.

mπ

|λ| > lim sup
|φ|�π

∣∣∣∣∣
∫ zk+εeiφ

zk

√
W∞

n (y) dy

∣∣∣∣∣ ≡ Ik(ε). (B.6)

This condition means that we have to take into account only those zeros ζ
(0)
k,m which

are sufficiently far from zk . Therefore for those which can fall onto zk we have to take m
sufficiently large, i.e. m > m0 = |λ|Ik(ε)/π .

For the remaining ones, i.e. those which are to approach finite nonzero distances to zk it
is necessary to make m growing linearly with λ, i.e. m = q[|λ|] + r with q = 1, 2, . . . , r =
0,±1,±2, . . . and [|λ|] being the step function of |λ|, i.e. |λ| = [|λ|] + �, 0 � � < 1.

Let us note further that the latter case will cover also the previous one when q = 0 and
r > m0. In all the formulae below we shall assume the cases of zeros falling down onto zk to
be taken into account just in this way.

Having this in mind we can come in (B.5) to the limit [|λ|] → ∞ to get for ζ
(0)
k,m ∼ ζ

(0)
k,qr (λ)∫ ζ

(0)
k,qr (λ)

zk

√
W∞

n (y) dy = +

(
q[|λ|] + r − 1

4

)
iπ

λ
+

1

2λ

∫
Kk(ζ

(0)
k,qr (�))

Z∞
0 (y, λ) dy, (B.7)

where Kk(ζ
(0)
k,qr (λ)) is a contour shown in figure 4(a) which starts and ends at the point ζ (0)

k,qr (�).
This contour is not closed since it starts and ends at different sites of the cut emerging from zk .

In fact (B.7) is an implicit condition for the asymptotic expansion ζ
(0)
k,qr (λ) of zeros ζ

(0)
k,m as

λ → ∞. Therefore we can look for the following form of semiclassical expansion for ζ
(0)
k,qr (λ)

ζ
(0)
k,qr (λ) =

∑
p�0

1

λp
ζ

(0)
k,qrp(�) (B.8)

with ζ
(0)
k,0r0(�) ≡ zk .

Let us now note that the condition (B.7) can be written uniformly as∫
Kk(ζ

(0)
k,qr (λ))

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

0 (y, λ)

)
dy = +

(
q[|λ|] + r − 1

4

)
iπ

λ
. (B.9)

We can now calculate the asymptotic series (B.8) in the limit [|λ|] → ∞ with fixed �

from the following formula:∫
Kk(ζ

(0)
k,qr0(�))

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

0 (y, λ)

)
dy

+ 2
∑
s�1

1

s!

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

0 (y, λ)

)(s)
∣∣∣∣∣
y=ζ

(0)
k,qr0(�)

⎛
⎝∑

p�1

1

λp
ζ

(0)
k,qrp(�)

⎞
⎠

s

=
(

q[|λ|] + r − 1

4

)
iπ

λ
, q > 0 (B.10)
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and with a similar formula for q = 0 obtained from the last one where ζ
(0)
k,qr0(�) is substituted

by ζ
(0)
k,0r1(�)/λ and p > 1.
The limit [|λ|] → ∞ with fixed � (and arg λ ≡ β, |β| < π/n) considered above is of

course regular.
Therefore for q > 0 the zero term ζ

(0)
k,qr0(�) of such an expansion is given by the equation∫

Kk(ζ
(0)
k,qr0(�))

1

2

√
W∞

n (y) dy =
∫ ζ

(0)
k,qr0(�)

zk

√
W∞

n (y)dy = qiπ e−iβ (B.11)

which shows that this term is independent of �.
The next term is given explicitly by

ζ
(0)
k,qr1(�) =

(
r − q� − 1

4

)
iπ e−iβ√

W∞
n (ζ

(0)
k,qr0(�))

(B.12)

and so on.
For q = 0 we get correspondingly∫ zk+ζ

(0)
k,0r1(�)/λ

zk

√
W∞

n (y) dy =
(

r − 1

4

)
iπ

λ
, r > m0 = |λ|Ik(ε)/π (B.13)

and

ζ
(0)
k,0r2(�) = 1

8

∫
Kk(zk+ζ

(0)
k,0r1(�)/λ)

X∞
1 (y) dy√

W∞
n

(
zk + ζ

(0)
k,0r1(�)

/
λ
) (B.14)

k = n+3
2 case.

This case corresponds to n odd and to the pattern of ESL’s shown in figure 1(a). We have
to continue ψ∞

n+3
2

(z, λ) to vicinities of ESL’s emerging from the root z0 and from the roots

zk, k = ±1,±2, . . . ,± n−1
2 . In the first case we have to express ψ∞

n+3
2

(z, λ) linearly by the

solutions ψ∞
− n+3

2
(z, λ) and ψ∞

−1(z, λ). For the remaining ESL’s ψ∞
n+3

2
(z, λ) is continued in the

same way as in the previous case. We have therefore

ψ∞
n+3

2
(z, λ) =

χ∞
n+3

2 →−1

χ∞
−1→− n+3

2

ψ∞
− n+3

2
(z, λ) + i eλ

∫ z−1
z0

√
W∞

n (y)dy
χ∞

n+3
2 →− n+3

2

χ∞
−1→− n+3

2

ψ∞
−1(z, λ) (B.15)

for the first ESL and

ψ∞
n+3

2
(z, λ) = i e−λ

∫ zk
z0

√
W∞

n (y)dy
χ∞

n+3
2 →k+1

χ∞
k→k+1

ψ∞
k (z, λ)

− i e−λ
∫ zk
z0

√
W∞

n (y)dy+λ
∫ zk+1
zk

√
W∞

n (y)dy
χ∞

n+3
2 →k

χ∞
k→k+1

ψ∞
k+1(z, λ) (B.16)

for the ESL’s emerging from the roots zk, k = 1, 2, . . . , n−1
2 while for the ES’s emerging from

the roots with the opposite sign of k we get

ψ∞
n+3

2
(z, λ) = e−λ

∫ z−k
z0

√
W∞

n (y)dy
χ∞

n+3
2 →−k−1

χ∞
−k→−k−1

ψ∞
−k(z, λ)

+ i e−λ
∫ z−k
z0

√
W∞

n (y)dy+λ
∫ z−k−1
z−k

√
W∞

n (y)dy
χ∞

n+3
2 →−k

χ∞
−k→−k−1

ψ∞
−k−1(z, λ). (B.17)

Arguing in exactly the same way as in the previous case from (B.15) and (B.17) for
zeros of ψ∞

n+3
2

(z, λ) on the ESL’s emerging from the roots z±k, k = 0, 1, 2, . . . , n−1
2 we get the
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corresponding conditions∫
K±k(ζ

( n+3
2 )

±k,qr (�))

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

n+3
2

(y, λ)

)
dy = ±

(
q[|λ|] + r − 1

4

)
iπ

λ
(B.18)

k = n+2
2 case.

This case corresponds to the even n and α = 1, see figure 1(b). We have to continue
ψ∞

n+2
2

(z, λ) to vicinities of its ESL’s emerging from the roots z±k, k = 0, 1, . . . , n−2
2 and from

z n
2
.

However, the corresponding formulae for the positions of zeros on the ESL’s emerging
from all the roots mentioned above except the last one coincide for the obvious reasons exactly
with the respective formulae (B.18) while for the ESL’s emerging from the last root we have

ψ∞
n+2

2
(z, λ) = i e−λ

∫ z n
2

z0

√
W∞

n (y)dy
(
χ∞

n+3
2 →− n

2
ψ∞

n
2

(z, λ) − χ∞
n+3

2 → n
2
ψ∞

− n
2
(z, λ)

)
, (B.19)

where z is assumed to lie on the lhs of the cut emerging from z n
2
.

Therefore for zeros ζ
( n+2

2 )
n
2 ,qr

of ψ∞
n+2

2
(z, λ) lying in the vicinity of the ESL emerging from z n

2

we get∫
K n

2
(ζ

( n+2
2 )

n
2 ,qr

(�))

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

n+2
2

(y, λ)

)
dy = ±

(
q[|λ|] + r − 1

4

)
iπ

λ
, (B.20)

where ± corresponds to the positions of ζ
( n+2

2 )
n
2 ,qr

on the left or right from the cut, respectively.

Of course we always get the same values for ζ
( n+2

2 )
n
2 ,qr

irrespective of the site chosen.
k = 1, 2, . . . , n

2 cases
We shall consider all the enumerated cases jointly since the corresponding roots are all

on the left from the imaginary axis independent of the parity of n.
We have to distinguish two cases corresponding to arg λ = β is equal to 0 or differs from

it. In the second case (the corresponding SG is shown in figure 2) the procedure of analytical
continuations of ψ∞

k (z, λ) along canonical paths to vicinities of all its the ESL’s is completely
analogous to the previous cases since all the sectors having these ESL’s as their boundaries are
available from the sector Sk along canonical paths. The rules of making these continuations
are now clear and their results are gathered by the formulae of the type (B.9), (B.18) or (B.20)
so we can focus our attention on the real case of λ.

In the case β = 0 each inner SL emerging from the root zk, k = 1, 2, . . . , n
2 is exceptional

for the corresponding solution ψ∞
k (z, λ), see figures 1(a)–(e), together with the two ESL’s

which close the sector S−k which is not available directly on any canonical paths from the
sector Sk .

On the other hand positions of other ESL’s corresponding to ψ∞
k (z, λ) in the considered

case is analogous to their positions for β �= 0 and their vicinities can be approached by
continuations of ψ∞

k (z, λ) along canonical paths, i.e. positions of zeros of the considered
solution on these ELS’s can be established exactly in the same way as for the cases investigated
so far. Therefore for positions of these zeros on their ESL’s we can invoke again the respective
formulae (B.9), (B.18) and (B.20).

Consider now positions of possible zeros of ψ∞
k (z, λ) on the inner line emerging from

the root zk (it ends at z−k) and on the remaining two lines emerging from z−k and running to
infinity. For the inner line we can use any pair of linear independent FS’s for both of which this
line is not exceptional. These can be for example the solutions ψ∞

−k+1(z, λ) and ψ∞
−k−1(z, λ).
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They communicate canonically with the solution ψ∞
k (z, λ) so we get

ψ∞
k (z, λ) = −e−λ

∫ z−k+1
zk

√
W∞

n (y) dy χ∞
k→−k−1

χ∞
−k+1→−k−1

ψ∞
−k+1(z, λ)

+ eλ
∫ z−k−1
zk

√
W∞

n (y) dy χ∞
k→−k+1

χ∞
−k+1→−k−1

ψ∞
−k−1(z, λ). (B.21)

From (B.21) we get for the positions of zeros of ψ∞
k (z, λ) on its inner ESL (zk, z−k)∫

Kk(ζ
(k)
k,qr (�))

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

k (y, λ)

)
dy = −

(
m − 1

4

)
iπ

λ
. (B.22)

It follows from (B.11) that q is now bounded by the integral Ik ≡ ∫ z−k

zk

√
W∞

n (y) dy, i.e.
q � −Ik/(iπ).

In order to look for possible zeros of ψ∞
k (z, λ) on its ESL’s emerging from z−k we

have to continue it further to vicinities of these lines using the solution ψ∞
−k(z, λ) which also

communicates canonically with both the solutions ψ∞
−k+1(z, λ) and ψ∞

−k−1(z, λ). Choosing
one of them we can express it as linear combinations of the others to get

ψ∞
−k+1(z, λ) = eλ

∫ z−k+1
z−k

√
W∞

n (y) dy
χ∞

−k+1→−k−1ψ
∞
−k(z, λ)

− eλ
∫ z−k+1
z−k

√
W∞

n (y) dy+λ
∫ z−k−1
z−k

√
W∞

n (y) dy
ψ∞

−k−1(z, λ) (B.23)

and

ψ∞
−k−1(z, λ) = e−λ

∫ z−k−1
z−k

√
W∞

n (y) dy
χ∞

−k−1→−k+1ψ
∞
−k(z, λ)

− e−λ
∫ z−k+1
z−k

√
W∞

n (y) dy−λ
∫ z−k−1
z−k

√
W∞

n (y) dy
ψ∞

−k+1(z, λ) (B.24)

respectively.
Now substituting subsequently both the above formulae to (B.21) we get the formulae

realizing continuations of ψ∞
k (z, λ) close to the respective ELS’s, i.e. we get in this way

ψ∞
k (z, λ) = −e−λ

∫ z−k
zk

√
W∞

n (y) dy χ∞
k→−k−1

χ∞
−k+1→−k−1

(
χ∞

−k+1→−k−1ψ
∞
−k(z, λ)

− eλ
∫ z−k−1
z−k

√
W∞

n (y) dy

(
1 + e2λ

∫ z−k
zk

√
W∞

n (y) dy χ∞
k→−k+1

χ∞
k→−k−1

)
ψ∞

−k−1(z, λ)

)
(B.25)

and

ψ∞
k (z, λ) = +eλ

∫ z−k
zk

√
W∞

n (y) dy χ∞
k→−k+1

χ∞
−k+1→−k−1

(
χ∞

−k+1→−k−1ψ
∞
−k(z, λ)

− e−λ
∫ z−k+1
z−k

√
W∞

n (y) dy

(
1 + e−2λ

∫ z−k
zk

√
W∞

n (y) dy χ∞
k→−k−1

χ∞
k→−k+1

)
ψ∞

−k+1(z, λ)

)
. (B.26)

The first of these formulae is suitable for analysing zeros of ψ∞
k (z, λ) in a vicinity of the

SL being the lower boundary of the sector S−k while the second in vicinity of the SL being its
upper boundary.

The formula (B.25) provides us with the following condition for zeros ζ
(k)−
−k,m of ψ∞

k (z, λ)

in the limit λ → ∞∫ ζ
(k)−
−k,m

z−k

√
W∞

n (y) dy = −
(

m − 1

4

)
iπ

λ
+

1

4λ

(
λ

∮
Kk

√
W∞

n (y) dy +
∮

Kk

Z∞
k dy

)

− 1

2λ
ln 2 cos

1

2
Im

(
λ

∮
Kk

√
W∞

n (y) dy +
∮

Kk

Z∞
k dyt

)
− 1

2λ

∫
K−k(ζ

(k)−
−k,m)

Z∞
k dy,

(B.27)

where Kk and K−k

(
ζ

(k)−
−k,m

)
are respective contours of integrations.
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Putting now λrk

∮
Kk

√
W∞

n (y)dy = 2(rk + R)iπ, |R| < 1
2 with rk a non-negative integer,

λrk
= [λrk

] + �rk
(R), 0 � �rk

< 1 and m = q[λrk
] + r we get from (B.27)∫ ζ

(k)−
−k,qr

z−k

√
W∞

n (y) dy = −
(

q[λrk
] + r − 1

4
+

R

2

)
iπ

λrk

+
1

4λrk

∮
Kk

Z∞
k dy

− 1

2λrk

ln 2 cos

(
Rπ +

1

2
Im
∮

Kk

Z∞
k dy

)
− 1

2λrk

∫
K−k(ζ

(k)−
−k,qr )

Z∞
k dy, (B.28)

where the limit taken is regular with fixed R.
Therefore for the first two terms of the semiclassical expansion of ζ

(k)−
−k,qr we get∫ ζ

(k)−
−k,qr0

z−k

√
W∞

n (y) dy = −qiπ

(B.29)

ζ
(k)−
−k,qr1(R) = −

(
r − q�rk

(R) − 1

4
+

R

2
+

1

2
ln 2 cos(Rπ)

)
iπ√

W∞
n

(
ζ

(k)−
−k,qr0

) .
In exactly the same way we get the condition for zeros ζ

(k)+
−k,m distributed along the upper

SL emerging from the turning point z−k in the limit λ → ∞∫ ζ
(k)+
−k,m

z−k

√
W∞

n (y) dy = −
(

m − 1

4

)
iπ

λ
+

1

4λ

(
λ

∮
Kk

√
W∞

n (y) dy +
∮

Kk

Z∞
k dy

)

+
1

2λ
ln 2 cos

1

2
Im

(
λ

∮
Kk

√
W∞

n (y) dy +
∮

Kk

Z∞
k dy

)
+

1

2λ

∫
K−k(ζ

(k)+
−k,m)

Z∞
k dy

(B.30)

and with the same meaning of notations used we get∫ ζ
(k)+
−k,qr

z−k

√
W∞

n (y) dy = −
(

q[λrk
] + r − 1

4
+

R

2

)
iπ

λrk

+
1

4λrk

∮
Kk

Z∞
k dy

+
1

2λrk

ln 2 cos

(
Rπ +

1

2
Im
∮

Kk

Z∞
k dy

)
+

1

2λrk

∫
K−k(ζ

(k)+
−k,qr )

Z∞
k dy (B.31)

with the following first coefficients of the corresponding semiclassical expansion of ζ
(k)+
−k,qr∫ ζ

(k)+
−k,qr0

z−k

√
W∞

n (y) dy = −qiπ

(B.32)

ζ
(k)+
−k,qr1(R) = −

(
r − q�rk

(R) − 1

4
+

R

2
− 1

2
ln 2 cos(Rπ)

)
iπ√

W∞
n

(
ζ

(k)+
−k,qr0

)
k = n+1

2 case. This is the last distinguished case which has to be treated. It corresponds to an
odd n of figure 1(a) and to the solution ψ∞

n+1
2

(z, λ). We should continue the latter solution to

its ESL’s emerging from the roots zk, k = 1, . . . , n−1
2 and from z0. Continuing to any ESL of

the first group we get

ψ∞
n+1

2
(z, λ) = e

λ
∫ zk
z n+1

2

√
W∞

n (y)dy

χ∞
n+1

2 →k−1ψ
∞
k (z, λ)

− e
λ
∫ zk
z n+1

2

√
W∞

n (y)dy−λ
∫ zk−1
zk

√
W∞

n (y) dy

χ∞
n+1

2 →k
ψ∞

k−1(z, λ)
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= (W∞
n (z)

)− 1
4 e

λ
∫ zk
z n+1

2

√
W∞

n (y) dy

×
(

eλ
∫ z

zk

√
W∞

n (y)dy
χ∞

n+1
2 →k−1χ

∞
k (z) + i e−λ

∫ z

zk

√
W∞

n (y)dy
χ∞

n+1
2 →k

χ∞
k−1(z, λ)

)
(B.33)

and hence for the respective distributions of zeros ζ
( n+1

2 )

k,qr (�)∫
Kk(ζ

( n+1
2 )

k,qr (�))

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

n+1
2

(y, λ)

)
dy =

(
q[|λ|] + r − 1

4

)
iπ

λ
. (B.34)

For the ESL emerging from z0 we have

ψ∞
n+1

2
(z, λ) = i e

λ
∫ z0
z n+1

2

√
W∞

n (y)dy (
χ∞

n+1
2 → n+3

2
ψ∞

n+3
2

(z, λ) − χ∞
n+1

2 →− n+3
2

ψ∞
− n+3

2
(z, λ)

)

= i
(
W∞

n (z)
)− 1

4 e
λ
∫ z0
z n+1

2

√
W∞

n (y)dy (
e−λ

∫ z

z0

√
W∞

n (y)dy
χ∞

n+1
2 → n+3

2
χ∞

n+3
2

(z)

+ i eλ
∫ z

z0

√
W∞

n (y)dy
χ∞

n+1
2 →− n+3

2
χ∞

− n+3
2

(z)
)

(B.35)

and hence∫
K0(ζ

( n+1
2 )

0,qr (�))

(
1

2

√
W∞

n (y) − 1

2λ
Z∞

n+1
2

(y, λ)

)
dy =

(
q[|λ|] + r − 1

4

)
iπ

λ
(B.36)

for the respective distributions of zeros on the considered ESL.

Appendix C

We show here that for the potential Wn(z, λ) in the limit λ → ∞ if there is a unique inner
SL of the SG for this potential between the turning points zk0(λ) and z−k0(λ) then arg λ �= 0
and in the general case arg λ ∼ |λ|− 2

n+2 . To see this consider in the limit λ → ∞ the integral

λ
∫ z−k0 (λ)

zk0 (λ)

√
Wn(y, λ)dy. With the accuracy O

(|λ|− 3
n+2
)

we have

λ

∫ z−k0 (λ)

zk0 (λ)

√
Wn(y, λ) dy = λ

∫ z−k0

zk0

√
W∞

n (y) dy − 1

2n
λb′

n−1(−iα)n−2
∫ z−k0

zk0

yn−1 dy√
W∞

n (y)

1

λ
2

n+2

,

(C.1)

where we have used a relation zk(λ) = zk − i 1
nα

b′
n−1λ

− 2
n+2 + O(λ− 4

n+2 ) valid for any turning
point in this limit, with zk being a turning point of W∞

n (z).
According to our assumption we have further (λ = |λ| eiβ)

Re

(
iβ
∫ z−k0 (λ)

zk0 (λ)

√
Wn(y, λ)dy

)
= − 1

2n
Re

(
b′

n−1(−iα)n−2
∫ z−k0

zk0

yn−1√
W∞

n (y)dy

)
1

|λ| 2
n+2

(C.2)

and hence finally

β = − 1

2niIk0

Re

(
b′

n−1(−iα)n−2
∫ z−k0

zk0

yn−1√
W∞

n (y) dy

)
1

|λ| 2
n+2

(C.3)

where Ik0 = ∫ z−k0
zk0

√
W∞

n (y) dy.
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